Skip to main content
Log in

The circadian clock in the brain: a structural and functional comparison between mammals and insects

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The circadian master clocks in the brains of mammals and insects are compared in respect to location, organization and function. They show astonishing similarities. Both clocks are anatomically and functionally connected to the optic system and possess multiple output pathways allowing synchronization with the environmental light-dark cycles as well as the control of diverse endocrine, autonomic and behavioral functions. Both circadian master clocks are composed of multiple neurons, which are organized in populations with different morphology, physiology and neurotransmitter content and appear to subserve different functions. In the hamster and in the cockroach, the master clock consists of a core region that gets input from the eyes, and a shell region from which the majority of output projections originate. Communication between core and shell, between all other populations of clock neurons as well as between the master clocks of both brain hemispheres is a prerequisite of normal rhythmic function. Phenomena like rhythm splitting and internal desynchronization can be observed under constant light conditions and are caused by the “uncoupling” of the master clocks of both brain hemispheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d
Fig. 2a, b
Fig. 3
Fig. 4a–c

Similar content being viewed by others

References

  • Abrahamson EE, Moore RY (2001) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916:172–191

    CAS  PubMed  Google Scholar 

  • Aida R, Moriya T, Araki M, Akiyama M, Wada K, Wada E, Shibata S (2002) Gastrin-releasing peptide mediates photic entrainable signals to dorsal subsets of suprachiasmatic nucleus via induction of Period gene in mice. Mol Pharmacol 61:26–34

    Article  CAS  PubMed  Google Scholar 

  • Albrecht U (2004) The mammalian circadian clock: a network of gene expression. Front Biosci 9:48–55

    CAS  PubMed  Google Scholar 

  • Allada R (2003) Circadian clocks. A tale of two feedback loops. Cell 112:284–286

    Article  CAS  PubMed  Google Scholar 

  • Antle MC, Foley DK, Foley NC, Silver R (2003) Gates and oscillators: a network model of the brain clock. J Biol Rhythms 18:339–350

    Article  PubMed  Google Scholar 

  • Arvanitogiannis A, Robinson B, Beaule C, Amir S (2000) Calbindin-D28 k immunoreactivity in the suprachiasmatic nucleus and the circadian response to constant light in the rat. Neuroscience 99:397–401

    Article  CAS  PubMed  Google Scholar 

  • Balsalobre A (2002) Clock genes in mammalian peripheral tissues. Cell Tissue Res 309:193–199

    Article  CAS  PubMed  Google Scholar 

  • Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289:2344–2347

    Article  CAS  PubMed  Google Scholar 

  • Blau J, Young MW (1999) Cycling vrille expression is required for a functional Drosophila clock. Cell 99:661–671

    CAS  PubMed  Google Scholar 

  • Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12:1574–1583

    CAS  PubMed  Google Scholar 

  • Bryant DN, LeSauter J, Silver R, Romero MT (2000) Retinal innervation of calbindin-D28 K cells in the hamster suprachiasmatic nucleus: ultrastructural characterization. J Biol Rhythms 15:103–111

    CAS  PubMed  Google Scholar 

  • Buijs RM, Eden GG van, Goncharuk VD, Kalsbeek A (2003) The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system. J Endocrinol 177:17–26

    CAS  PubMed  Google Scholar 

  • Cheng MY, Bullock CM, Li C, Lee AG, Bermak JC, Beluzzi J, Weaver DR, Leslie FM, Zhou Q-Y (2002) Prokineticin 2 tansmits the behavioral circadian rhythm of the suprachiasmatic nucleus. Nature 417:405–410

    Article  CAS  PubMed  Google Scholar 

  • Cymborowski (1981) J interdiscipl Cycle Res 12 133

    Google Scholar 

  • Daan S, Berde C (1978) Two coupled oscillators: simulations of the circadian pacemaker in mammalian activity rhythms. J Theor Biol 70:297–313

    Google Scholar 

  • Daan S, Albrecht U, van der Horst GT, Illnerova H, Roenneberg T, Wehr TA, Schwartz WJ (2001) Assembling a clock for all seasons: are there M and E oscillators in the genes? J Biol Rhythms 16:105–116

    CAS  PubMed  Google Scholar 

  • Davis FC, Gorski RA (1984) Unilateral lesions of the hamster suprachiasmatic nuclei: evidence for redundant control of circadian rhythms. J Comp Physiol A 154:221–232

    Google Scholar 

  • Davis FC, Viswanathan N (1996) the effect of transplanting one or two suprachiasmatic nuclei on the period of the restored rhythm. J Biol Rhythms 11:291–301

    CAS  PubMed  Google Scholar 

  • De la Iglesia HO, Meyer J, Carpino A, Schwartz WJ (2000) Antiphase oscillation of the left and right suprachiasmatic nuclei. Science 290:799–801

    Article  PubMed  Google Scholar 

  • De la Iglesia HO, Meyer J, Schwartz WJ (2003) Lateralization of circadian pacemaker output: activation of left- and right-sided luteinizing hormone-releasing hormone neurons involves a neural rather than a humoral pathway. J Neurosci 23:7412–7414

    PubMed  Google Scholar 

  • Ehnbohm K (1948) Studies on the central and sympathic nervous system and some sense organs in the head of neuropteroid insects. Opusc Entomol [Suppl] 8:1–162

    Google Scholar 

  • Emery P, Stanewsky R, Helfrich-Förster C, Emery-Le M, Hall JC, Rosbash M (2000) Drosophila CRY confers circadian light sensitivity to behavioral pacemaker neurons. Neuron 26:493–504

    CAS  Google Scholar 

  • Ewer J, Frisch B, Hamblen-Coyle MJ, Rosbash M, Hall JC (1992) Expression of the period clock gene within different cells types in the brain of Drosophila adults and mosaic analysis of these cells’ influence on circadian behavioral rhythms. J Neurosci 12:3321–3349

    CAS  PubMed  Google Scholar 

  • Fleissner G, Fleissner G, Frisch B (1993) A new type of putative non-visual photoreceptors in the optic lobe of beetles. Cell Tissue Res 273:435–445

    CAS  PubMed  Google Scholar 

  • Frisch B, Hardin PE, Hamblen-Coyle MJ, Rosbash M, Hall JC (1994) A promoterless period gene mediates behavioral rhythmicity and cyclical per expression in a restricted subset of the Drosophila nervous system. Neuron 12:555–570

    CAS  PubMed  Google Scholar 

  • Frisch B, Fleissner G, Fleissner G, Brandes C, Hall JC (1996) Staining in the brain of Pachymorpha sexguttata mediated by an antibody against a Drosophila clock gene product: labelling of cells with possible importance for the beetle’s circadian rhythms. Cell Tissue Res 286:411–429

    Article  CAS  PubMed  Google Scholar 

  • Giebultowicz JM (2001) Peripheral clocks and their role in circadian timing: insights from insects. Philos Trans R Soc London Ser B 356:1791–1799

    Article  CAS  Google Scholar 

  • Hagberg M (1986) Ultrastructure and central projections of extraocular photoreceptors in caddiesflies (Insecta:Trichoptera). Cell Tissue Res 245:643–648

    Google Scholar 

  • Hakim H, DeBernardo AP, Silver R (1991) Circadian locomotor rhythms, but not photoperiodic responses, survive surgical isolation of the SCN in hamsters. J Biol Rhythms 6:97–113

    CAS  PubMed  Google Scholar 

  • Hamada T, LeSauter J, Venuti JM, Silver R (2001) Expression of Period genes: rhythmic and nonrhythmic compartments of the suprachiasmatic nucleus pacemaker. J Neurosci 21:7742–7750

    CAS  PubMed  Google Scholar 

  • Hamada T, LeSauter J, Lokshin M, Romero MT, Yan L, Venuti JM, Silver R (2003) Calbindin influences response to photic input in suprachiasmatic nucleus. J Neurosci 23:8820–8826

    CAS  PubMed  Google Scholar 

  • Handler AM, Konopka RJ (1979) Transplantation of a circadian pacemaker in Drosophila. Nature 279:236–238

    CAS  PubMed  Google Scholar 

  • Hanström B (1940) Inkretorische Organe, Sinnesorgane und Nervensystem des Kopfes einiger niederer Insektenordnungen. K Sven Vetenskapsakad Handl 18:1–265

    Google Scholar 

  • Hattar S, Liao H-W, Takao M, Berson DM, Yau K-W (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    CAS  PubMed  Google Scholar 

  • Helfrich-Förster C (1995) The period clock gene is expressed in CNS neurons, which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. Proc Natl Acad Sci USA 92:612–616

    Google Scholar 

  • Helfrich-Förster C (1997) Development of pigment-dispersing hormone-immunoreactive neurons in the nervous system of Drosophila melanogaster. J Comp Neurol 380:335–354

    Article  PubMed  Google Scholar 

  • Helfrich-Förster C (1998) Robust circadian rhythmicity of Drosophila melanogaster requires the presence of lateral neurons: a brain-behavioral study of disconnected mutants. J Comp Physiol A 182:435–453

    PubMed  Google Scholar 

  • Helfrich-Förster C (2000) Differential control of morning and evening components in the activity rhythm of Drosophila melanogaster—sex specific differences suggest a different quality of activity. J Biol Rhythms 15:135–154

    PubMed  Google Scholar 

  • Helfrich-Förster C (2001) The activity rhythm of Drosophila melanogaster is controlled by a dual oscillator system. J Insect Physiol 47:877–887

    Article  Google Scholar 

  • Helfrich-Förster C (2003) The neuroarchitecture of the circadian clock in the Drosophila brain. Microsc Res Tech 62:94–102

    Article  PubMed  Google Scholar 

  • Helfrich-Förster C, Homberg U (1993) Pigment-dispersing hormone-immunoreactive neurons in the nervous system of wild-type Drosophila melanogaster and of several mutants with altered circadian rhythmicity. J Comp Neurol 337:177–190

    CAS  PubMed  Google Scholar 

  • Helfrich-Förster C, Stengl M, Homberg U (1998) Organization of the circadian system in insects. Chronobiol Int 15:567–594

    PubMed  Google Scholar 

  • Helfrich-Förster C, Täuber M, Park JH, Mühlig-Versen M, Schneuwly S, Hofbauer A (2000) Ectopic expression of the neuropeptide pigment-dispersing factor alters behavioral rhythms in Drosophila melanogaster. J Neurosci 20:3339–3353

    PubMed  Google Scholar 

  • Helfrich-Förster C, Edwards T, Yasuyama K, Wisotzki B, Schneuwly S, Stanewsky R, Meinertzhagen IA, Hofbauer A (2002) The extraretinal eyelet of Drosophila: development, ultrastructure, and putative circadian function. J Neurosci 22:9255–9266

    PubMed  Google Scholar 

  • Herzog ED, Tosini G (2001) The mammalian circadian clock shop. Semin Cell Dev Biol 12:295–303

    Article  CAS  PubMed  Google Scholar 

  • Homberg U, Würden S, Dircksen H, Rao KR (1991) Comparative anatomy of pigment-dispersing hormone-immunoreactive neurons in the brain of orthopteroid insects. Cell Tissue Res 266:343–357

    Google Scholar 

  • Homberg U, Reischig T, Stengl M (2003) Neural organization of the circadian system of the cockroach Leucophaea maderae. Chronobiol Int 20:577–591

    Article  CAS  PubMed  Google Scholar 

  • Honma S, Honma K (1999) Light-induced uncoupling of multioscillatory circadian system in a diurnal rodent, Asian chipmunk. Am J Physiol 276:R1390–R1396

    CAS  PubMed  Google Scholar 

  • Honma S, Nakamura W, Shirakawa T, Honma K (2003) Cellular oscillators in the suprachiasmatic nucleus: studies of cultured SCN on a multi-electrode dish. In: Honma K, Honma S (eds) Circadian clock as multi-oscillator system. Hokkaido University Press, Sapporo

  • Inouye ST, Shibata S (1994) Neurochemical organization of circadian rhythm in the suprachiasmatic nucleus. Neurosci Res 20:109–130

    CAS  PubMed  Google Scholar 

  • Jagota A, de la Iglesia HO, Schwartz WJ (2000) Morning and evening circadian oscillations in the suprachiasmtic nucleus in vitro. Nat Neurosci 3:372–376

    CAS  PubMed  Google Scholar 

  • Kaneko M, Helfrich-Förster C, Hall JC (1997) Spatial and temporal expression of the period and timeless genes in the developing nervous system of Drosophila: newly identified pacemaker candidates and novel features of clock gene product cycling. J Neurosci 17:6745–6760

    CAS  PubMed  Google Scholar 

  • Kaneko M, Park JH, Cheng Y, Hardin PE, Hall JC (2000) Disruption of synaptic transmission or clock-gene-product oscillations in circadian pacemaker cells of Drosophila cause abnormal behavioral rhythms. J Neurobiol 43:207–233

    CAS  PubMed  Google Scholar 

  • Klein DC, Moore RY, Reppert SM (1991) Suprachiasmatic nucleus. The mind’s clock. Oxford University Press, New York

  • Koehler WK, Fleissner G (1978) Internal desynchronisation of bilaterally organised circadian oscillators in the visual system of insects. Nature 274:708–710

    CAS  PubMed  Google Scholar 

  • Kramer A, Yang F-C, Snodgrass P, Li X, Scammell TE, Davis FC, Weitz CJ (2001) Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294:2511–2515

    CAS  PubMed  Google Scholar 

  • Lakin-Thomas PL (2000) Circadian rhythms: new functions for old clock genes. Trends Genet 16:135–142

    Article  CAS  PubMed  Google Scholar 

  • LeSauter J, Silver R (1999) Localization of a suprachiasmatic nucleus subregion regulating locomotor rhythmicity. J Neurosci 19:5574–5585

    CAS  PubMed  Google Scholar 

  • Liu C, Reppert SM (2000) GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron 25:123–128

    CAS  PubMed  Google Scholar 

  • Loesel RL, Homberg U (2001) Anatomy and physiology of neurons with processes in the accessory medulla of the cockroach Leucophaea maderae. J Comp Neurol 439:193–207

    Article  CAS  PubMed  Google Scholar 

  • Low-Zeddies SS, Takahashi JS (2001) Chimera analysis of the Clock mutation in mice shows that complex cellular integration determines circadian behavior. Cell 105:25–42

    CAS  PubMed  Google Scholar 

  • Malpel S, Klarsfeld A, Rouyer F (2002) Larval optic nerve and adult extra-retinal photoreceptors sequentially associate with clock neurons during Drosophila brain development. Development 129:1443–1453

    CAS  PubMed  Google Scholar 

  • Mason R (1991) The effects of continuous light exposure on Syrian hamster suprachiasmatic (SCN) neuronal discharge activity in vitro. Neurosci Lett 123:160–163

    CAS  PubMed  Google Scholar 

  • Meijer JH, Daan S, Overkamp GJ, Hermann PM (1990) The two-oscillator circadian system of tree shrews (Tupaia belangeri) and its response to light and dark pulses. J Biol Rhythms 5:1–16

    CAS  PubMed  Google Scholar 

  • Meyer-Bernstein EL, Jetton AE, Matsumoto S, Markuns JF, Lehman MN, Bittman EL (1999) Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology 140:758–764

    Article  PubMed  Google Scholar 

  • Michel S, Geusz ME, Zaritsky JJ, Block GD (1993) Circadian rhythm in membrane conductance expressed in isolated neurons. Science 259:239–241

    CAS  PubMed  Google Scholar 

  • Moore RY (1973) Retinohypothalamic projection in mammals: a comparative study. Brain Res 49:403–409

    Article  CAS  PubMed  Google Scholar 

  • Moore RY (1993) Organization of the primate circadian system. J Biol Rhythms 8:s3–s9

    PubMed  Google Scholar 

  • Moore RY (1996) Entrainment pathways and the functional organization of the circadian system. Prog Brain Res 111:103–119

    CAS  PubMed  Google Scholar 

  • Moore RY, Speh JC, Leak RK (2002) Suprachiasmatic nucleus organization. Cell Tissue Res 309:89–98

    Google Scholar 

  • Moore-Ede MC, Sulzman FM, Fuller CA (1982) The clocks that time us: physiology of the circadian timing system. Harvard University Press, Cambridge

    Google Scholar 

  • Nagano M, Adachi A, Nakahama K, Nakamura T, Tamada M, Meyer-Bernstein E, Sehgal A, Shigeyoshi Y (2003) An abrupt shift in the day/night cycle causes desynchrony in the mammalian circadian center. J Neurosci 23:6141–6151

    CAS  PubMed  Google Scholar 

  • Nakamura W, Honma S, Shirakawa T, Honma K (2001) Regional pacemakers composed of multiple oscillator neurons in the rat suprachiasmatic nucleus. Eur J Neurosci 14:666–674

    CAS  PubMed  Google Scholar 

  • Neville (1967) A dermal light sense influencing skeletal structure in locusts. J Insect Physiol 13:933–939

    Article  Google Scholar 

  • Nishiitsutsuji-Uwo J, Petropulos SF, Pittendrigh CS (1967) Central nervous system control of circadian rhythmicity in the cockroach. I. Role of the pars intercerebralis. Biol Bull 133:679–696

    Google Scholar 

  • Page TL (1982) Transplantation of the cockroach circadian pacemaker. Science 216:73–75

    Google Scholar 

  • Pape HC (1995) Nitric oxide: an adequate modulatory link between biological oscillators and control systems in the mammalian brain. Semin Neurosci 7:329–340

    Article  CAS  Google Scholar 

  • Park JH, Helfrich-Förster C, Lee G, Liu L, Rosbash M, Hall JC (2000) Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc Natl Acad Sci USA 97:3608–3613

    Article  CAS  Google Scholar 

  • Peng Y, Stoleru D, Levine JD, Hall JC, Rosbash M (2003) Drosophila free-running rhythms require intercellular communication. PLoS Biology 1:32–40

    Article  CAS  Google Scholar 

  • Pennartz CM, De Jeu MT, Geurtsen AM, Sluiter AA, Hermes ML (1998) Electrophysiological and morphological heterogeneity of neurons in slices of rat suprachiasmatic nucleus. J Physiol (Lond) 506:775–793

    CAS  PubMed  Google Scholar 

  • Petri B, Stengl M (1997) Pigment-dispersing hormone shifts the phase of the circadian pacemaker of the cockroach Leucophaea maderae. J Neurosci 17:4087–4093

    CAS  PubMed  Google Scholar 

  • Petri B, Stengl M (2001) Phase response curves of a molecular model oscillator: implications for mutual coupling of paired oscillators. J Biol Rhythms 16:125–141

    CAS  PubMed  Google Scholar 

  • Petri B, Stengl M, Würden S, Homberg U (1995) Immunocytochemical characterization of the accessory medulla in the cockroach Leucophaea maderae. Cell Tissue Res 282:3–19

    CAS  PubMed  Google Scholar 

  • Petri B, Homberg U, Loesel R, Stengl M (2002) Evidence for a role of GABA and Mas-allatotropin in photoic entrainment of the circadian clock of the cockroach Leucophaea maderae. J Exp Biol 205:1459–1469

    Google Scholar 

  • Pflugfelder O (1936) Vergleichend-anatomische, experimentelle und embryologische Untersuchungen über das Nervensystem und die Sinnesorgane der Rhynchoten. Zoologica 34:1–102

    Google Scholar 

  • Pickard GE, Turek FW (1982) Splitting of the circadian rhythm of activity is abolished by unilateral lesions of the suprachiasmatic nuclei. Science 215:1119–1121

    CAS  PubMed  Google Scholar 

  • Pickard GE, Kahn R, Silver R (1984) Splitting of the circadian rhythm of body temperature in the golden hamster. Physiol Behav 32:763–766

    Article  CAS  PubMed  Google Scholar 

  • Pittendrigh CS, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: a clock for all seasons. J Comp Physiol A 106:333–355

    Google Scholar 

  • Pitts S, Perone E, Silver R (2003) Food-entrained circadian rhythms are sustained in arrhythmic Clk/Clk mutant mice. Am J Physiol 285:R57–R67

    CAS  PubMed  Google Scholar 

  • Plautz JD, Kaneko M, Hall JC, Kay SA (1997) Independent photoreceptive circadian clocks throughout Drosophila. Science 278:1632–1635

    CAS  Google Scholar 

  • Prosser RA, Edgar DM, Heller HC, Miller JD (1994) A possible glial role in the mammalian circadian clock. Brain Res 643:296–301

    CAS  PubMed  Google Scholar 

  • Pyza EM, Gorska-Andrzejak J, Salvaterra PM, Meinertzhagen IA (2003) Identification of cells showing cyclical expression of Na+/K+-ATPase in the visual system of Drosophila melanogaster. In: Proceedings of the Göttingen neurobiology meeting, pp 564–565

  • Quintero JE, Kuhlman SJ, McMahon DG (2003) The biological clock nucleus: a multiphasis oscillator network regulated by light. J Neurosci 23:8070–8076

    CAS  PubMed  Google Scholar 

  • Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978

    CAS  PubMed  Google Scholar 

  • Reischig T, Stengl M (1996) Morphology and pigment-dispersing hormone immunocytochemistry of the accessory medulla, the presumptive circadian pacemaker of the cockroach Leucophaea maderae. Cell Tissue Res 285:305–319

    Article  Google Scholar 

  • Reischig T, Stengl M (2002) Optic lobe commissures in a three-dimensional brain model of the cockroach Leucophaea maderae: a search for the circadian coupling pathways. J Comp Neurol 443:388–400

    Article  PubMed  Google Scholar 

  • Reischig T, Stengl M (2003a) Ectopic transplantation of the accessory medulla restores circadian locomotor rhythms in arrhythmic cockroaches (Leucophaea maderae). J Exp Biol 206:1877–1886

    Google Scholar 

  • Reischig T, Stengl M (2003b) Ultrastructure of pigment-dispersing hormone immunoreactive neurons in a three-dimensional model of the accessory medulla of the cockraoch Leucophaea maderae. Cell Tissue Res 314:421–435

    Article  PubMed  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  CAS  PubMed  Google Scholar 

  • Reuss S (1996) Components and connections of the circadian timing system in mammals. Cell Tissue Res 285:353–378

    Article  CAS  PubMed  Google Scholar 

  • Sauman I, Reppert SM (1996) Circadian clock neurons in the silkmoth Antheraea pernyi: novel mechanisms of period protein regulation. Neuron 17:889–900

    CAS  PubMed  Google Scholar 

  • Schibler U, Sassone-Corsi P (2002) A web of circadian pacemakers. Cell 111:919–922

    Article  CAS  PubMed  Google Scholar 

  • Schibler U, Ripperger J, Brown SA (2003) Peripheral circadian oscillators in mammals: time and food. J Biol Rhythms 18:250–260

    Article  PubMed  Google Scholar 

  • Schwartz WJ, Carpino A, de la Iglesia HO Jr, Baler R, Klein DC, Nakabeppu Y, Aronin N (2000) Differential regulation of fos family genes in the ventrolateral and dorsomedial subdivisions of the rat suprachiasmatic nucleus. Neuroscience 98:535–547

    CAS  PubMed  Google Scholar 

  • Shaap J, Bos NP, Jeu MT de, Geurtsen AM, Meijer JH, Pennartz CM (1999) Neurons of the rat suprachiasmatic nucleus show a circadian rhythm in membrane properties that is lost during prolonged whole-cell recording. Brain Res 815:154–166

    CAS  PubMed  Google Scholar 

  • Shafer OT, Rosbash M, Truman JW (2002) Sequential nuclear accumulation of the clock proteins period and timeless in the pacemaker neurons of Drosophila melanogaster. J Neurosci 22:5946–5954

    CAS  PubMed  Google Scholar 

  • Shibuya CA, Melnyk RB, Mrosovsky N (1980) Simultaneous splitting of drinking and locmotor activity rhythms in a golden hamster. Naturwissenschaften 67:45–47

    CAS  PubMed  Google Scholar 

  • Silver R, LeSauter J, Tresco PA, Lehman MN (1996) A diffusible coupling signal form the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382:810–813

    CAS  PubMed  Google Scholar 

  • Stanewsky R (2003) Genetic analysis of the circadian system in Drosophila melanogaster and mammals. J Neurobiol 54:111–147

    Article  CAS  PubMed  Google Scholar 

  • Steinlechner S, Jacobmeier B, Scherbarth F, Dernbach H, Kruse F, Albrecht U (2002) Robust circadian rhythmicity of Per1 and Per2 mutant mice in constant light, and dynamics of Per1 and Per2 gene expression under long and short photoperiods. J Biol Rhythms 17:202–209

    Article  CAS  PubMed  Google Scholar 

  • Stengl M, Homberg U (1994) Pigment-dispersing hormone-immunoreactive neurons in the cockroach Leucophaea maderae share properties with circadian pacemaker neurons. J Comp Physiol A 175:203–213

    Google Scholar 

  • Stephan FK (2002) The “other” circadian system: food as a Zeitgeber. J Biol Rhythms 17:284–292

    PubMed  Google Scholar 

  • Sujino M, Masumoto K-H, Yamaguchi S, van der Horst GTJ, Okamura H, Inouye S-IT (2003) Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr Biol 13:664–668

    Article  CAS  PubMed  Google Scholar 

  • Swann JM, Turek FW (1985) Multiple circadian oscillators regulate the timing of behavioral end endocrine rhythms in female golden hamsters. Science 228:898–900

    CAS  PubMed  Google Scholar 

  • Thain SC, Hall A, Millar AJ (2000) Functional independence of circadian clocks that regulate plant gene expression. Curr Biol 10:951–956

    Article  CAS  PubMed  Google Scholar 

  • Tomioka K (1993) Analysis of coupling between optic lobe circadian pacemakers in the cricket Gryllus bimaculatus. J Comp Physiol A 172:401–408

    Google Scholar 

  • Tomioka K (1999) Light and serotonin phase-shift the circadian clock in the cricket optic lobe in vitro. J Comp Physiol A 185:437–444

    CAS  Google Scholar 

  • Truman JW (1972) Physiology of insect rhythms. II. The silkmoth brain as the location of the biological clock controlling eclosion. J Comp Physiol A 81:99–114

    Google Scholar 

  • Truman JW (1974) Physiology of insect rhythms. IV. Role of the brain in the regulation of the flight rhythm of the giant silkmoths. J Comp Physiol A 95:281–296

    Google Scholar 

  • Vafopoulou X, Steel CGH (2001) Induction of rhythmicity in prothroacicotropic hormone and ecdysteroids in Rhodnius prolixus: roles of photic and neuroendocrine Zeitgebers. J Insect Physiol 47:935–941

    Article  CAS  Google Scholar 

  • Van den Pol AN (1980) The hypothalamic suprachiasmatic nucleus of rat: intrinsic anatomy. J Comp Neurol 191:661–702

    PubMed  Google Scholar 

  • Van den Pol AN, Finkbeiner SM, Cornell-Bell AH (1992) Calcium excitability and oscillations in suprachiasmatic nucleus neurons and glia in vitro. J Neurosci 2:2648–2664

    Google Scholar 

  • Van Esseveldt KE, Lehman MN, Boer GJ (2000) The suprachiasmatic nucleus and the circadian time-keeping system revisited. Brain Res Brain Res Rev 33:34–77

    PubMed  Google Scholar 

  • Veleri S, Brandes C, Helfrich-Förster C, Hall JC, Stanewsky S (2003) A self-sustaining, light-entrainable circadian oscillator in the Drosophila brain. Curr Biol 13:1758–1767

    Article  CAS  PubMed  Google Scholar 

  • Watts AG, Sheward WJ, Whale D, Fink G (1989) The effect of knife cuts in the subparaventricular zone of the female rat hypothalamus on oestrogen-induced dirnal surges of plasma prolactin and LH and circadian wheel-running activity. J Endocrinol 122:593–604

    CAS  PubMed  Google Scholar 

  • Weber F (1995) Cyclic layer deposition in the cockroach (Blaberus craniifer) endocuticle: a circadian rhythm in leg pieces cultured in vitro. J Insect Physiol 41:153–161

    Article  CAS  Google Scholar 

  • Welsh DK, Reppert SM (1996) Gap junctions couple astrocytes but not neurons in dissociated cultures of rat suprachiasmatic nucleus. Brain Res 706:30–36

    Article  CAS  PubMed  Google Scholar 

  • Welsh DK, Logothetis DE, Meister M, Reppert SM (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14:697–706

    CAS  PubMed  Google Scholar 

  • Whitmore D, Foulkes NS, Sassone-Corsi P (2000) Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature 404:87–91

    CAS  PubMed  Google Scholar 

  • Wiedenmann G (1983) Splitting in a circadian activity rhythm: the expression of bilaterally paired oscillators. J Comp Physiol A 150:51–60

    Google Scholar 

  • Yan L, Takekida S, Shigeyoshi Y, Okamura H (1999) Per1 and Per2 gene expression in the rat suprachiasmatic nucleus: circadian profile and the compartment-specific response to light. Neuroscience 94:141–150

    Article  PubMed  Google Scholar 

  • Yang Z, Sehgal A (2001) Role of molecular oscillations in generating behavioral rhythms in Drosophila. Neuron 29:453–467

    CAS  PubMed  Google Scholar 

  • Yasuyama K, Meinertzhagen IA (1999) Extraretinal photoreceptors at the compound eye’s posterior margin in Drosophila melanogaster J Comp Neurol 412:193–202

    Google Scholar 

  • Young MW, Kay SA (2001) Time zones: a comparative genetics of circadian clocks. Nat Rev Genet 2:702–715

    Article  CAS  Google Scholar 

  • Závodská R, Sauman I, Sehnal F (2003a) Distribution of PER protein, pigment-dispersing hormone, prothoracicotropic hormone, and eclosion hormone in the cephalic nervous system of insects. J Biol Rhythms 18:106–122

    Article  PubMed  Google Scholar 

  • Závodská R, Sauman I, Sehnal F (2003b) The cycling and distribution of PER-like antigen in relation to neurons recognized by the antisera to PTTH and EH in Thermobia domestica. Insect Biochem Mol Biol 33:1227–1238

    Article  PubMed  Google Scholar 

  • Zelazny B, Neville AC (1972) Endocuticle layer formation controlled by non-circadian clocks in beetle. J Insect Physiol 18:1967–1979

    Article  Google Scholar 

  • Zlomanczuk P, Margraf RR, Lynch GR (1991) In vitro electrical activity in the suprachiasmatic nucleus following splitting and masking of wheel-running behavior. Brain Res 559:94–95

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Wolfgang Engelmann, Thomas Reischig, Bill Schwartz and Monika Stengl for fruitful discussions and comments on the manuscript, and Thomas Reischig for contributing Fig. 2b

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Helfrich-Förster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helfrich-Förster, C. The circadian clock in the brain: a structural and functional comparison between mammals and insects. J Comp Physiol A 190, 601–613 (2004). https://doi.org/10.1007/s00359-004-0527-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-004-0527-2

Keywords

Navigation