Skip to main content
Log in

Venom effects on monoaminergic systems

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The monoamines, dopamine, epinephrine, histamine, norepinephrine, octopamine, serotonin and tyramine serve many functions in animals. Many different venoms have evolved to manipulate monoaminergic systems via a variety of cellular mechanisms, for both offensive and defensive purposes. One common function of monoamines present in venoms is to produce pain. Some monoamines in venoms cause immobilizing hyperexcitation which precedes venom-induced paralysis or hypokinesia. A common function of venom components that affect monoaminergic systems is to facilitate distribution of other venom components by causing vasodilation at the site of injection or by increasing heart rate. Venoms of some scorpions, spiders, fish and jellyfish contain adrenergic agonists or cause massive release of catecholamines with serious effects on the cardiovascular system, including increased heart rate. Other venom components act as agonists, antagonists or modulators at monoaminergic receptors, or affect release, reuptake or synthesis of monoamines. Most arthropod venoms have insect targets, yet, little attention has been paid to possible effects of these venoms on monoaminergic systems in insects. Further research into this area may reveal novel effects of venom components on monoaminergic systems at the cellular, systems and behavioral levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abo V, Viera L, Silveira R, Dajas F (1989) Effects of local inhibition of locus coeruleus acetylcholinesterase by fasciculin in rats. Neurosci Lett 98:253–257

    Article  CAS  PubMed  Google Scholar 

  • Adams ME, Olivera BM (1994) Neurotoxins: overview of an emerging research technology. Trends Neurosci 17:151–155

    CAS  PubMed  Google Scholar 

  • Aird SD (2002) Ophidian envenomation strategies and the role of purines. Toxicon 40:335–393

    Article  CAS  PubMed  Google Scholar 

  • Alzahaby M, Rowan EG, Young LC, Al-Zahaby AS, Abu-Sinna G, Harvey AL (1995) Some pharmacological studies on the effects of Cerastes vipera (Sahara sand viper) snake venom. Toxicon 33:1299–1311

    Article  CAS  PubMed  Google Scholar 

  • Alzahaby M, Harvey AL, Young LC, Faure G, Rowan EG (1998) Purification of a 5-HT uptake inhibitor from the venom of Cerastes vipera. Toxicon 36:601–607

    Article  CAS  PubMed  Google Scholar 

  • Aridor M, Rajmilevich G, Beaven MA, Sagi-Eisenberg R (1993) Activation of exocytosis by the heterotrimeric G-protein G i 3. Science 263:1569–1572

    Google Scholar 

  • Arie-Saadia G, Sofer S, Zlotkin E, Shainberg A (1996) Effect of Leiurus quinquestriatus hebreus venom on calcium and deoxyglucose uptake in cultured cardiac cells. Toxicon 34:435–442

    Article  CAS  PubMed  Google Scholar 

  • Blum MS (1984) Poisonous ants and their venoms. In: Tu ATT (ed) Handbook of natural toxins, vol 2. Insect poisons, allergens and other invertebrate venoms. Dekker, New York

  • Burggren WW, French K, Eckert R, Randall DJ (2002) Eckert animal physiology: mechanisms and adaptations, 5th edn. Freeman, New York

    Google Scholar 

  • Burnett JW, Weinrich D, Williamson JA, Fenner PJ, Lutz LL, Bloom DA (1998) Autonomic neurotoxicity of jellyfish and marine animal venoms. Clin Auton Res 8:125–130

    CAS  Google Scholar 

  • Carroll PR, Morgans D (1978) Responses of the rabbit atria to the venom of the Sydney funnel-web spider (Atrax robustus). Toxicon 16:489–494

    Article  CAS  PubMed  Google Scholar 

  • Chai OH, Kim EK, Lee Y-H, Kim J-G, Baik B-J, Lee MS, Han E-H, Kim HT, Song CH (2001) Histamine release induced by dendroaspis natriuretic peptide from rat mast cells. Peptides 22:1421–1426

    Article  CAS  PubMed  Google Scholar 

  • Chaves F, Barboza M, Gutierrez JM (1995) Pharmacological study of edema induced by venom of the snake Bothrops asper (Terciopelo) in mice. Toxicon 33:31–39

    Article  CAS  PubMed  Google Scholar 

  • Church JE, Hodgson WC (2000) Dose-dependent cardiovascular and neuromuscular effects of stonefish (Synanceja trachynis) venom. Toxicon 38:391–407

    Article  CAS  PubMed  Google Scholar 

  • Corrado AP, Antonio A, Diniz CR (1968) Brazilian scorpion venom (Tityus serrulatus), an unusual sympathetic postganglionic stimulant. J Pharmacol Exp Ther 164:253–258

    CAS  PubMed  Google Scholar 

  • Costa SKP, Hyslop S, Nathan LP, Zanesco A, Brain SD, de Nucci G, Antunes E (1998) Activation by Phoneutria nigriventer spider venom of autonomic nerve fibers in the isolated rat heart. Eur J Pharmacol 363:139–146

    Article  CAS  PubMed  Google Scholar 

  • Czerwiec E, De Potter W, Convents A, Vauquelin G (1989) Conus venom interaction with α2-adrenergic receptors in calf retina membranes. Neurochem Int 14:413–417

    Article  CAS  Google Scholar 

  • Dai L, Yasuda A, Naoki H, Corzo G, Andriantsiferana M, Nakajima T (2001) IsCT, a novel cytotoxic linear peptide from scorpion Opisthacanthus madagascariensis. Biochem Biophys Res Commun 286:820–825

    Article  CAS  PubMed  Google Scholar 

  • Daly JW (1995) The chemistry of poisons in amphibian skin. Proc Natl Acad Sci USA 92:9–13

    CAS  PubMed  Google Scholar 

  • Daly JW, Myers CW, Whittaker N (1987) Further classification of skin alkaloids from neotropical poison frogs (Dendrobatidae), with a general survey of toxic/noxious substances in the amphibia. Toxicon 25:1023–1095

    CAS  PubMed  Google Scholar 

  • Dauplais M, Lecoq A, Song J, Cotton J, Jamin N, Gilquin B, Roumestand C, Vita C, de Medeiros CLC, Rowan EG, Harvey AL, Menez A (1997) On the convergent evolution of animal toxins. J Biol Chem 272:4302–4309

    Article  CAS  PubMed  Google Scholar 

  • Deshpande SB, Bagchi S, Rai OP, Aryya NC (1999) Pulmonary oedema produced by scorpion venom augments a phenyldiguanide-induced reflex response in anaesthetized rats. J Physiol (Lond) 521:537–544

    CAS  PubMed  Google Scholar 

  • DeulofeuV, Ruveda EA (1971) The basic constituents of toad venoms. In: Bucherl W, Buckley EE (eds) Venomous animals and their venoms, venomous vertebrates, vol. 2. Academic, New York, pp 475–496

  • Dowling JE (2001) Neurons and Networks, 2nd edn. Harvard University Press, Cambridge

  • Drumond YA, Couto AS, Moraes-Santos T, Almeida AP, Freire-Maia L (1995) Effects of toxin Ts-γ and tityus toxin purified from Tityus serrulatus scorpion venom on isolated rat atria. Comp Biochem Physiol 111C:183–190

    CAS  Google Scholar 

  • Duffield PH, Duffield AM, Carroll PR, Morgans D (1979) Analysis of the venom of the Sydney funnel-web spider, Atrax robustus, using gas chromatography mass spectrometry. Biomed Mass Spectrom 6:105–108

    CAS  PubMed  Google Scholar 

  • Early SL, Michaelis EK (1987) Presence of proteins and glutamate as major constituents of the venom of the spider Araneus gemma. Toxicon 25:433–442

    Article  CAS  PubMed  Google Scholar 

  • Edery H, Ishay J, Lass I, Gitter S (1972) Pharmacological activity of oriental hornet (Vespa orientalis) venom. Toxicon 10:13–23

    Article  CAS  PubMed  Google Scholar 

  • Edwards DH, Kravitz EA (1997) Serotonin, social status and aggression. Curr Opin Neurobiol 7:812–819

    Article  CAS  Google Scholar 

  • England LJ, Imperial J, Jacobsen R, Craig AG, Gulyas J, Akhtar M, Rivier J, Julius D, Olivera BM (1998) Inactivation of a serotonin-gated ion channel by a polypeptide toxin from marine snails. Science 281:575–578

    Article  CAS  PubMed  Google Scholar 

  • Eno AE, Konya RS, Ibu JO (1998) Biological properties of a venom extract from the sea anemone, Bunodosoma cavernata. Toxicon 36:2013–2020

    Article  CAS  PubMed  Google Scholar 

  • Freire-Maia L, Pinto GI, Franco I (1974) Mechanism of the cardiovascular effects produced by purified scorpion toxin in the rat. J Pharmacol Exp Ther 188:207–213

    CAS  PubMed  Google Scholar 

  • Frew R, Hamilton MG, Lundy PM (1994) Identification of noradrenaline in venom from the funnel-web spider Hololena curta. Toxicon 32:511–515

    Article  CAS  PubMed  Google Scholar 

  • Froy O, Gurevitz M (1998) Membrane potential modulators: a thread of scarlet from plants to humans. FASEB J 12:1793–1796

    CAS  PubMed  Google Scholar 

  • Garnier P, Grosclaude J-M, Goudey-Perriere F, Gervat V, Gayral P, Jacquot C, Perriere C (1996) Presence of norepinephrine and other biogenic amines in stonefish venom. J Chromatogr B 685:364–369

    Article  CAS  Google Scholar 

  • Goudet C, Chi C-W, Tytgat J (2002). An overview of toxins and genes from the venom of the Asian scorpion Buthus martensi Karsch. Toxicon 40:1239–1258

    Article  CAS  PubMed  Google Scholar 

  • Griesbacher T, Althuber P, Zenz M, Rainer I, Griengl S, Lembeck F (1998) Vespula vulgaris venom: role of kinins and release of 5-hydroxytryptamine from skin mast cells. Eur J Pharmacol 351:95–104

    Article  CAS  PubMed  Google Scholar 

  • Gueron M, Yarom R (1970) Cardiovascular manifestations of severe scorpion sting: clinicopathologic correlations. Chest 57:156–162

    CAS  PubMed  Google Scholar 

  • Gwee MCE, Wong P-H, Gopalakrishnakone P, Cheah LS, Low KSY (1993) The black scorpion Heterometrus longimanus: pharmacological and biochemical investigation of the venom. Toxicon 31:1305–1314

    Article  CAS  PubMed  Google Scholar 

  • Gwee MC, Nirthanan S, Khoo HE, Gopalakrishnakone P, Kini RM, Cheah LS (2002) Autonomic effects of some scorpion venoms and toxins. Clin Exp Pharmacol Physiol 29:795–801

    Article  CAS  PubMed  Google Scholar 

  • Habermann E (1972) Bee and wasp venoms. Science 177:314–322

    CAS  PubMed  Google Scholar 

  • Haller J, Makara GB, Kruk MR (1998) Catecholaminergic involvement in the control of aggression: hormones, the peripheral sympathetic, and central noradrenergic systems. Neurosci Biobehav Rev 22:85–97

    Article  CAS  PubMed  Google Scholar 

  • Harvey AL (1984) New toxins for different receptors. Trends Pharmacol Sci 5:178

    Article  CAS  Google Scholar 

  • Harvey AL, Bradley KN, Cochran SA, Rowan EG, Pratt JA, Quillfeldt JA, Jerusalinsky DA (1998) What can toxins tell us for drug discovery? Toxicon 36:1635–1640

    Article  CAS  PubMed  Google Scholar 

  • Harvey AL, Kornisiuk E, Bradley KN, Cervenansky C, Duran R, Adrover M, Sanchez G, Jerusalinsky D (2002) Effects of muscarinic toxins MT1 and MT2 from green mamba on different muscarinic cholinoceptors. Neurochem Res 27:1543–1554

    Article  CAS  PubMed  Google Scholar 

  • Haspel G, Rosenberg LA, Libersat F (2003) Direct injection of venom by a predatory wasp into cockroach brain. J Neurobiol 56:287–292

    Article  PubMed  Google Scholar 

  • Higashijima T, Burnier J, Ross EM (1990) Regulation of G i and G o by mastoparan, related amphiphilic peptides and hydrophobic amines. J Biol Chem 265:14176–14187

    CAS  PubMed  Google Scholar 

  • Hopkins BJ, Hodgson WC, Sutherland SK (1994) Pharmacological studies of stonefish (Synanceja trachynis) venom. Toxicon 32:1197–1210

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa A, Nagayama T, Masada K, Yoshida M, Suzuki-Kusaba M, Hisa H, Kimura T, Satoh S (1999) Role of ET B receptors and nitric oxide in adrenal catecholamine secretion in anesthetized dogs. Am J Physiol 277 46:R1051–R1056

    CAS  PubMed  Google Scholar 

  • Huber R, Panksepp JB, Yue Z, Delago A, Moore P (2001) Dynamic interactions of behavior and amine neurochemistry in acquisition and maintenance of social rank in crayfish. Brain Behav Evol 57:271–282

    Article  CAS  PubMed  Google Scholar 

  • Ismail M, Abd-Elsalam MA, Al-Ahaidib MS (1994) Androctonus crassicauda (Olivier), a dangerous and unduly neglected scorpion. I. Pharmacological and clinical studies. Toxicon 32:1599–1618

    Article  CAS  PubMed  Google Scholar 

  • Jangi BS (1984) Centipede venoms and poisons. In: Tu ATT (ed) Handbook of natural toxins, vol. 2. Insect poisons, allergens and other invertebrate venoms. Dekker, New York

  • Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science, 4th edn. Elsevier, New York

  • Karalliedde L (1995) Animal toxins. Br J Anaesth 74:319–327

    CAS  PubMed  Google Scholar 

  • Kloog Y, Ambar I, Sokolovsky M, Wolleberg Z (1989) Sarafatoxin, a novel vasoconstrictor peptide: phosphoinositide hydrolysis in rat heart and brain. Science 242:268–270

    Google Scholar 

  • Korszniak NV, Story DF (1994) Effects of the venom of the Theridiid spider, Steatoda capensis Hann, on autonomic transmission in rat isolated atria and caudal artery. Toxicon 32:85–96

    Article  CAS  PubMed  Google Scholar 

  • Kuhn-Nentwig L, Schaller J, Nentwig W (1994) Purification of toxic peptides and the amino acid sequence of CSTX-1 from the multi component venom of Cupiennius salei (Araneaeictenidae). Toxicon 32:287–302

    Article  CAS  PubMed  Google Scholar 

  • Kuhn-Nentwig L, Bucheler A, Studer A, Nentwig W (1998) Taurine and histamine: low molecular compounds in prey hemolymph increase the killing power of spider venom. Naturwissenschaften 85:136–138

    Article  CAS  PubMed  Google Scholar 

  • Laraba-Djebari F, Martin-Eauclaire M-F, Mauco G, Marchot P (1995) Afaacytin, an αβ-fibrinogenase from Cerastes cerastes (horned viper) venom, activates purified factor X and induces serotonin release from human blood platelets. Eur J Biochem 233:756–765

    CAS  PubMed  Google Scholar 

  • Lent CM, Dickinson MH, Marshall CG (1989) Serotonin and leech feeding behavior: obligatory neuromodulation. Am Zool 29:1241–1254

    CAS  Google Scholar 

  • Libersat F (2003) Wasp uses venom cocktail to manipulate the behavior of its cockroach prey. J Comp Physiol A 189:497–508

    Article  CAS  Google Scholar 

  • Libersat F, Pflueger H-J (2004) Monoamines and the orchestration of behavior. Bioscience 54:17–25

    Google Scholar 

  • Lipps BV, Khan AA (2001) The presence of pharmacological substances myoglobin and histamine in venoms. J Venom Anim Toxins 7:45–55

    CAS  Google Scholar 

  • Marder E, Bucher D (2001) Central pattern generators and the control of rhythmic movements. Curr Biol 11:986–996

    Article  Google Scholar 

  • Matsuo G, Matsumura Y, Tadano K Hashimoto T, Morimoto S (1997a) Involvement of nitric oxide in endothelin ET B receptor-mediated inhibitory actions on antidiuresis and norepinephrine overflow induced by stimulation of renal nerves in anesthetized dogs. J Cardiovasc Pharmacol 30:325–331

    Article  CAS  PubMed  Google Scholar 

  • Matsuo G, Matsumura Y, Tadano K, Morimoto S (1997b) Effects of sarafotoxin S6c on antidiuresis and norepinephrine overflow induced by stimulation of renal nerves in anesthetized dogs. J Pharmacol Exp Ther 280:905–910

    CAS  PubMed  Google Scholar 

  • McIntosh JM, Foderaro TA, Li W, Ireland CM, Olivera BM (1993) Presence of serotonin in the venom of Conus imperialis. Toxicon 31:1561–1566

    Article  CAS  PubMed  Google Scholar 

  • Menez A (1998) Functional architectures of animal toxins: a clue to drug design? Toxicon 36:1557–1572

    Article  PubMed  Google Scholar 

  • Morgans D, Carroll PR (1976) A direct acting adrenergic component of the venom of the Sydney funnel-web spider Atrax robustus. Toxicon 14:185–189

    Article  CAS  PubMed  Google Scholar 

  • Nakajima T (1986) Pharmacological biochemistry of vespid venoms. In: Piek T (ed) Venoms of the Hymenoptera. Academic Press, London, pp 309–327

  • Olivera BM (1997) Conus venom peptides, receptor and ion channel targets, and drug design: 50 million years of neuropharmacology. Mol Biol Cell 8:2101–2109

    CAS  PubMed  Google Scholar 

  • Olivera BM (1999) Conus venom peptides: correlating chemistry and behavior. J Comp Physiol A 185:353–359

    CAS  PubMed  Google Scholar 

  • Orchard I, Ramirez JM, Lange AB (1993) A multifunctional role for octopamine in locust flight. Annu Rev Entomol 38:227–249

    CAS  Google Scholar 

  • Owen MD (1971) Insect venoms: identification of dopamine and noradrenaline in wasp and bee stings. Experientia 27:544–545

    CAS  PubMed  Google Scholar 

  • Ozaki Y, Matsumoto Y, Yatomi Y, Higashihara M, Kariya T, Kume S (1990) Mastoparan, a wasp venom, activates platelets via pertussis toxin-sensitive GTP-binding proteins. Biochem Biophys Res Commun 170:779–785

    CAS  PubMed  Google Scholar 

  • Piek T (1990) Neurotoxins from venoms of the Hymenoptera—twenty-five years of research in Amsterdam. Comp Biochem Physiol C 96:223–233

    Article  CAS  PubMed  Google Scholar 

  • Piek T, Spanjer W (1986) Chemistry and pharmacology of solitary wasp venoms. In: Piek T (ed) Venoms of the Hymenoptera. Academic, London, pp 161–307

  • Pinto JEB, Rothlin RP (1974) Presynaptic adrenergic supersensitivity induced by crude Latrodectus mactans venom. Toxicon 12:535–540

    Article  CAS  PubMed  Google Scholar 

  • de Plater GM, Martin RL, Milburn PJ (1998) The natriuretic peptide (OVCNP-39) from platypus (Ornithorhynchus anatinus) venom relaxes the isolated rat uterus and promotes oedema and mast cell histamine release. Toxicon 36:847–857

    Article  PubMed  Google Scholar 

  • Possani LD, Becerril B, Delepierre M, Tytgat J (1999) Scorpion toxins specific for Na+ channels. Eur J Biochem 264:287–300

    CAS  PubMed  Google Scholar 

  • Rash LD, Hodgson WC (2002) Pharmacology and biochemistry of spider venoms. Toxicon 40: 225–254

    Article  CAS  PubMed  Google Scholar 

  • Rash LD, King RG, Hodgson WC (1998) Evidence that histamine is the principal pharmacological component of venom from an Australian wolf spider (Lycosa godeffroyi). Toxicon 36:367–375

    CAS  PubMed  Google Scholar 

  • Rosen T (1990) Caterpillar dermatitis. Dermatol Clin 8:245–252

    CAS  PubMed  Google Scholar 

  • Rosenfeld G, Nahas L, Kelen EMA (1968) Coagulant, proteolytic, and hemolytic properties of some snake venoms. In: Bucherl W, Buckley EE, Deulofeu V (eds) Venomous animals and their venoms: venomous vertebrates, vol 1. Academic Press, New York, pp 229–271

  • Sarkar NK, Devi A (1968) Enzymes in snake venoms. In: Bucherl W, Buckley EE, Deulofeu V (eds) Venomous animals and their venoms: venomous vertebrates, vol 1. Academic Press, New York, pp 167–212

  • Sauviat M-P, Garnier P, Guodey-Perriere F, Perriere C (1995) Does crude venom of the stonefish (Synanceia verrucosa) activate β-adrenoreceptors in the frog heart muscle? Toxicon 33:1207–1213

    Article  CAS  PubMed  Google Scholar 

  • Schwarzschild MA, Vale W, Corigliano-Murphy AC, Pisano JJ, Ip NY, Zigmond RE (1989) Activation of ganglionic tyrosine hydroxylase by peptides of the secretin-glucagon family: structure-function studies. Neuroscience 31:159–167

    Article  CAS  PubMed  Google Scholar 

  • Sharpe IA, Gehrmann J, Loughnan ML, Thomas L, Adams DA, Atkins A, Palant E, Craik DJ, Adams DJ, Alewood PF, Lewis RJ (2001) Two classes of conopeptides inhibit the α1-adrenoreceptor and noradrenaline transporter. Nat Neurosci 4:902–907

    Article  CAS  PubMed  Google Scholar 

  • Sofer S, Cohen R, Shapir Y, Chen L, Colon A, Scharf SM (1997) Scorpion venom leads to gastrointestinal ischemia despite increased oxygen delivery in pigs. Crit Care Med 25:834–840

    CAS  PubMed  Google Scholar 

  • Toledo RC, Jared C (1995) Cutaneous granular glands and amphibian venoms. Comp Biochem Physiol 111A:1–29

    Article  CAS  Google Scholar 

  • Tzeng M-C, Yen C-H, Hseu M-J, Tseng C-C, Tsai M-D, DuPureur CM (1995) Binding proteins on synaptic membranes for crotoxin and taipoxin, two phospholipases A2 with neurotoxicity. Toxicon 33:451–457

    Article  CAS  PubMed  Google Scholar 

  • Ushkaryov Y (2002) α-Latrotoxin: from structure to some functions. Toxicon 40:1–5

    Article  CAS  PubMed  Google Scholar 

  • Uvnas B, Diamant B, Hogberg B (1962) Trigger action of phospholipase A on mast cells. Arch Int Pharmacodyn 140:577–580

    CAS  Google Scholar 

  • Vander A, Sherman J, Luciano D (2001) Human physiology, 8th edn. Mcgraw-Hill, Boston

  • Vetter RS, Visscher PK (1998) Bites and stings of medically important venomous arthropods. Int J Dermatol 37:481–496

    Article  CAS  PubMed  Google Scholar 

  • Weisel-Eichler A, Libersat F (2002) Are monoaminergic systems involved in the lethargy produced by the venom of a parasitoid wasp in the cockroach prey? J Comp Physiol A 188:315–324

    Article  CAS  Google Scholar 

  • Weisel-Eichler A, Haspel G, Libersat F (1999) Venom of a parasitoid wasp induces prolonged grooming in the cockroach. J Exp Biol 202:957–964

    CAS  PubMed  Google Scholar 

  • Welsh JH (1964) Composition and mode of action of some invertebrate venoms. Annu Rev Pharmacol 4:293–304

    CAS  Google Scholar 

  • West DJ, Andrews EB, Bowman D, McVean AR, Thorndyke MC (1996) Toxins from some poisonous and venomous marine snails. Comp Biochem Physiol 113C:1–10

    CAS  Google Scholar 

  • Wilson EO (1971) The insect societies. Belknap Press of Harvard University Press, Cambridge, p 272

  • Yarom R (1970) Scorpion venom: a tutorial review of its effects in men and experimental animals. Clin Toxicol 3:561–569

    CAS  PubMed  Google Scholar 

  • Yarom R, Braun K (1970) Cardiovascular effects of scorpion venom, morphological changes in the myocardium. Toxicon 8:41–46

    Article  PubMed  Google Scholar 

  • Zlotkin E, Eitan M, Bindokas VP, Adams ME, Moyer M, Burkhart W, Fowler E (1991) Functional duality and structural uniqueness of depressant insect-selective neurotoxins. Biochemistry 30:4814–4821

    CAS  PubMed  Google Scholar 

  • Zornik E, Paisley K, Nichols R (1999) Neural transmitters and a peptide modulate Drosophila heart rate. Peptides 20:45–51

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aviva Weisel-Eichler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisel-Eichler, A., Libersat, F. Venom effects on monoaminergic systems. J Comp Physiol A 190, 683–690 (2004). https://doi.org/10.1007/s00359-004-0526-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-004-0526-3

Keywords

Navigation