Skip to main content
Log in

Behavioral analysis of polarization vision in tethered flying locusts

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

For spatial navigation many insects rely on compass information derived from the polarization pattern of the sky. We demonstrate that tethered flying desert locusts (Schistocerca gregaria) show e-vector-dependent yaw-torque responses to polarized light presented from above. A slowly rotating polarizer (5.3° s−1) induced periodic changes in yaw torque corresponding to the 180° periodicity of the stimulus. Control experiments with a rotating diffuser, a weak intensity pattern, and a stationary polarizer showed that the response is not induced by intensity gradients in the stimulus. Polarotaxis was abolished after painting the dorsal rim areas of the compound eyes black, but remained unchanged after painting the eyes except the dorsal rim areas. During rotation of the polarizer, two e-vectors (preferred and avoided e-vector) induced no turning responses: they were broadly distributed from 0 to 180° but, for a given animal, were perpendicular to each other. The data demonstrate polarization vision in the desert locust, as shown previously for bees, flies, crickets, and ants. Polarized light is perceived through the dorsal rim area of the compound eye, suggesting that polarization vision plays a role in compass navigation of the locust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4A–F
Fig. 5

Similar content being viewed by others

References

  • Baker RR (1978) The evolutionary ecology of animal migration. Hodder and Stoughton, London

  • Baker PS, Gewecke M, Cooter RJ (1984) Flight orientation of swarming Locusta migratoria. Physiol Entomol 9:247–252

    Google Scholar 

  • Brunner D, Labhart T (1987) Behavioural evidence for polarization vision in crickets. Physiol Entomol 12:1–10

    Google Scholar 

  • Burghause FMHR (1979) Die strukturelle Spezialisierung des dorsalen Augenteils der Grillen (Orthoptera, Grylloidea). Zool Jahrb Physiol 83:502–525

    Google Scholar 

  • Coulson KL (1988) Polarization and intensity of light in the atmosphere. Deepak, Hampton, VA

  • Draper J (1980) The direction of desert locust migration. J Animal Ecol 49:959–974

    Google Scholar 

  • Eggers A, Gewecke M (1993) The dorsal rim area of the compound eye and polarization vision in the desert locust (Schistocerca gregaria). In: Wiese K, Gribakin FG, Popov AV, Renninger G (eds) Sensory systems of arthropods. Birkhäuser, Basel, pp 101–109

  • Eggers A, Weber T (1993) Behavioural evidence for polarization vision in locusts. In: Elsner N, Heisenberg M (eds) Gene-brain-behaviour. Thieme, Stuttgart, p 336

  • Farrow RA (1990) Flight and migration in acridoids. In: Chapman RF, Joern A (eds) Biology of grasshoppers. Wiley, New York, pp 227–314

  • Frisch K von (1949) Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148

    Google Scholar 

  • Gewecke M (1975) The influence of the air-current sense organs on the flight behaviour of Locusta migratoria. J Comp Physiol 103:79–95

    Google Scholar 

  • Homberg U, Paech A (2002) Ultrastructure and orientation of ommatidia in the dorsal rim area of the locust compound eye. Arthropod Struct Dev 30:271–280

    Article  Google Scholar 

  • Homberg U, Würden S (1997) Movement-sensitive, polarization-sensitive, and light-sensitive neurons of the medulla and accessory medulla of the locust, Schistocerca gregaria. J Comp Neurol 386:329–346

    Article  CAS  PubMed  Google Scholar 

  • Homberg U, Hofer S, Pfeiffer K, Gebhardt S (2003) Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria. J Comp Neurol 462:415–430

    Article  PubMed  Google Scholar 

  • Kennedy JS (1945) Observations on the mass migration of desert locust hoppers. Trans R Entomol Soc Lond 95:247–262

    Google Scholar 

  • Kennedy JS (1951) The migration of the desert locust (Schistocerca gregaria FORSK.). I. The behaviour of swarms. II. A theory of long-range migrations. Philos Trans R Soc Lond Ser B 235:163–290

    Google Scholar 

  • Labhart T, Meyer EP (1999) Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 47:368–379

    Article  CAS  PubMed  Google Scholar 

  • Labhart T, Meyer EP (2002) Neural mechanisms in insect navigation: polarization compass and odometer. Curr Opin Neurobiol 12:707–714

    Article  CAS  PubMed  Google Scholar 

  • Mappes M, Homberg U (2003) Behavioral evidence of polarization vision in the locust Schistocerca gregaria. In: Elsner N, Zimmermann H (eds) The neurosciences from basic research to therapy. Thieme, Stuttgart, p 567

  • Mouritsen H, Frost BJ (2002) Virtual migration in tethered flying monarch butterflies reveals their orientation mechanisms. Proc Natl Acad Sci USA 99:10162–10166

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer K, Homberg U (2003) Neurons of the anterior optic tubercle of the locust Schistocerca gregaria are sensitive to the plane of polarized light. In: Elsner N, Zimmermann H (eds) The neurosciences from basic research to therapy. Thieme, Stuttgart, p 567–568

  • Philipsborn A von, Labhart T (1990) A behavioural study of polarization vision in the fly, Musca domestica. J Comp Physiol A 167:737–743

    Google Scholar 

  • Preiss R, Gewecke M (1991) Compensation of visually simulated wind drift in the swarming flight of the desert locust (Schistocerca gregaria). J Exp Biol 157:461–481

    Google Scholar 

  • Riley JR, Reynolds DR (1986) Orientation at night by high-flying insects. In: Danthanarayana W (ed) Insect flight: dispersal and migration. Springer, Berlin Heidelberg New York, pp 71–87

  • Rossel S, Wehner R (1986) Polarization vision in bees. Nature 323:128–131

    Google Scholar 

  • Uvarov BP (1977) Grasshoppers and locusts, vol 2. Centre of Overseas Pest Research, London

  • Vitzthum H, Müller M, Homberg U (2002) Neurons of the central complex of the locust Schistocerca gregaria are sensitive to polarized light. J Neurosci 22:1114–1125

    CAS  PubMed  Google Scholar 

  • Waterman TH (1981) Polarization sensitivity. In: Autrum H (ed) Handbook of sensory physiology, vol VII, part 6B. Springer, Berlin Heidelberg New York, pp 281–461

  • Wehner R (1982) Himmelsnavigation bei Insekten: Neurophysiologie und Verhalten. Neujahrsbl Naturforsch Ges Zürich 182:1–132

  • Wehner R (1984) Astronavigation in insects. Annu Rev Entomol 29:277–298

    Google Scholar 

  • Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199:129–140

    PubMed  Google Scholar 

Download references

Acknowledgements

We are particularly grateful to Drs. Michael Gewecke und Reinhard Preiss for providing the wind tunnel and yaw-torque meter. Sincere thanks are given to Dr. Jan Dolzer for helpful and essential suggestions on data evaluation. This research was supported by DFG grants HO 950/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mappes.

Appendix

Appendix

Calculation of periodicity score P

The periodicity in the locusts yaw-torque response is quantified by the periodicity score P (for further details see von Philipsborn and Labhart 1990). It takes into account several parameters from the yaw torque histograms:

$$ \begin{array}{*{20}l} {{{\text{P}} = x \cdot q^{{\mathbf{z}}} } \hfill} & {{} \hfill} \\ {{} \hfill} & {{x = \frac{{{\left( {a + b} \right)}^{2} }} {{{\left( {a - 18} \right)}^{2} + {\left( {b - 18} \right)}^{2} + {\left| {b - a} \right|} + c + m + n}}} \hfill} \\ {{} \hfill} & {{} \hfill} \\ {{} \hfill} & {{q = \frac{{{\sum\limits_{}^A {RG_{i} + {\sum\limits_{}^B {{\left| {RG_{i} } \right|}} }} }}} {{{\sum\limits_{}^{36} {{\left| {RG_{i} } \right|}} }}},\,\,\,0 \leqslant q \leqslant 1} \hfill} \\ {{} \hfill} & {{} \hfill} \\ {{} \hfill} & {{z = \frac{{36 - {\left( {a + b} \right)}}} {6}} \hfill} \\ \end{array} $$

where a is the maximum number of positive yaw-torque responses (RGi) following each other in one string (A) of the histogram, b is the maximum number of negative yaw-torque responses following each other in one string (B) of the histogram, c is the number of sign alterations (+/−) in the histogram, m is the number of maxima in string A, n is the number of minima in string B, \( {\sum\limits_{}^A {RG_{i} } } \) the sum of positive RGi values in string A, \( {\sum\limits_{}^B {{\left| {RG_{i} } \right|}} } \) the overall sum of negative RGi values in string B, and \( {\sum\limits_{i = 1}^{36} {{\left| {RG_{i} } \right|}} } \) the overall sum of all 36 RGi values.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mappes, M., Homberg, U. Behavioral analysis of polarization vision in tethered flying locusts. J Comp Physiol A 190, 61–68 (2004). https://doi.org/10.1007/s00359-003-0473-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-003-0473-4

Keywords

Navigation