Skip to main content
Log in

Wavelength dependence of visual acuity in goldfish

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Visual acuity was measured in a two-choice training experiment with food reward. Four goldfish were trained to select a homogeneously illuminated testfield when a high-contrast grating (transparancy) was shown for comparison at the second testfield. Measurements were performed for white and monochromatic testfield illuminations in the light adapted state. Fourteen wavelengths between 404 nm and 683 nm were tested. For each wavelength (and white light) the testfield intensity was determined for which spatial resolution was highest. Between 446 nm and 683 nm maximal values of 2.0 cycles/deg (corresponding to a visual acuity of 15' of arc) were found. At 404 nm and in the ultraviolet resolution was lower (0.6 and ~0.25–0.35 cycles/deg, respectively). Cone and small ganglion cell densities may equally account for visual acuity. The action spectrum of maximal visual acuity is very similar to the spectral sensitivity function representing recognition of "colour". Measurements under reduced room illumination and after treatment with Ethambutol further indicate that the detection of high contrast gratings is processed by the same "channel" as colour vision. A similar separate and parallel processing of "colour" and "form" on the one hand, and "brightness" and "motion" on the other hand was found in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  • Aho A-C (1997) The visual acuity of the frog (Rana pipiens). J Comp Physiol A 180:19–24

    Article  CAS  PubMed  Google Scholar 

  • Bilotta J, Powers MK (1991) Spatial contrast sensitivity of goldfish: mean luminance, temporal frequency and a new psychophysical technique. Vision Res 31:577–585

    Article  CAS  PubMed  Google Scholar 

  • Bowmaker JK, Thorpe A, Douglas RH (1991) Ultraviolet-sensitive cones in the goldfish. Vision Res 31:349–352

    CAS  PubMed  Google Scholar 

  • Brunner G (1934) Über die Sehschärfe der Elritze (Phoxinus laevis) bei verschiedenen Helligkeiten. Z Vergl Physiol 21:296–316

    Google Scholar 

  • Charman WN, Tucker J (1973) The optical system of the goldfish eye. Vision Res 13:1–8

    Article  CAS  PubMed  Google Scholar 

  • Djamgoz MBA, Yamada M (1990) Electrophysiological characteristics of retinal neurones: synaptic interactions and functional outputs. In: Douglas RH, Djamgoz MBA (eds) The visual system of fish. Chapman and Hall, London, pp 159–210

  • Douglas RH, Hawryshyn CW (1990) Behavioural studies of fish vision: an analysis of visual capabilities. In: Douglas RH, Djamgoz MBA (eds) The visual system of fish. Chapman and Hall, London, pp 373–418

  • Fernald R (1990) The optical system of fishes. In: Douglas RH, Djamgoz MBA (eds) The visual system of fish. Chapman and Hall, London, pp 45–61

  • Hester F (1968) Visual contrast thresholds of the goldfish (Carassius auratus). Vision Res 8:1315–1335

    Article  CAS  PubMed  Google Scholar 

  • Kirschfeld K (1976) The resolution of lens and compound eyes. In: Zettler F, Weiler R (eds) Neural principles in vision. Springer, Berlin Heidelberg New York, pp 354–370

  • Kock J-H (1982) Neuronal addition and retinal expansion during growth of the crucian carp eye. J Comp Neurol 209:264–274

    CAS  PubMed  Google Scholar 

  • Kock J-H, Reuter T (1978) Retinal ganglion cells in the crucian carp (Carassius carassius). I. Size and number of somata in eyes of different size. J Comp Neurol 179:535–548

    CAS  PubMed  Google Scholar 

  • Marc RE, Sperling HG (1976) The chromatic organization of the goldfish cone mosaic. Vision Res 16:1211–1224

    Article  CAS  PubMed  Google Scholar 

  • Mora-Ferrer C, Neumeyer C (1996) Reduction of red-green discrimination by dopamine D1 receptor antagonists and retinal dopamine depletion. Vision Res 36:4035–4044

    Article  CAS  PubMed  Google Scholar 

  • Mora-Ferrer C, Gangluff V (2000) D2-dopamine receptor blockade impairs motion detection in goldfish. Vis Neurosci 17:177–186

    Article  CAS  PubMed  Google Scholar 

  • Mora-Ferrer C, Gangluff V (2002) D2-dopamine receptor blockade modulates temporal resolution in goldfish. Vis Neurosci 19:807–815

    Article  PubMed  Google Scholar 

  • Neumeyer C (1984) On spectral sensitivity in goldfish: evidence for neural interactions between different "cone mechanisms". Vision Res 24:1123–1131

    Article  Google Scholar 

  • Neumeyer C (1986) Wavelength discrimination in goldfish. J Comp Physiol A 158:203–213

    Google Scholar 

  • Neumeyer C, Arnold K (1989a) Tetrachromatic colour vision becomes trichromatic under white adaptation light of moderate intensity. Vision Res 29:1719–1727

    Article  CAS  PubMed  Google Scholar 

  • Neumeyer C, Arnold K (1989b) Tetrachromatic colour vision in goldfish and turtle. In: Kulikowski JJ, Dickinson CM, Murray IJ (eds) Seeing contour and colour. Pergamon Press, Oxford, pp 617–631

  • Neumeyer C, Wietsma JJ, Spekreijse H (1991) Separate processing of "colour" and "brightness" in goldfish. Vision Res 31:537–549

    CAS  PubMed  Google Scholar 

  • Northmore DPM, Dvorak CA (1979) Contrast sensitivity and acuity of the goldfish. Vision Res 19:255–261

    Article  CAS  PubMed  Google Scholar 

  • Palacios AG, Varela FJ, Srivastava R, Goldsmith TH (1998) Spectral sensitivity of cones in the goldfish, Carassius auratus. Vision Res 38:2135–2146

    Article  CAS  PubMed  Google Scholar 

  • Penzlin H, Stubbe M (1977) Untersuchungen zur Sehschärfe des Goldfisches (Carassius auratus L.). Zool Jahrb Abt Allg Zool Physiol 81:310–326

    Google Scholar 

  • Schaerer S, Neumeyer C (1996) Motion detection in goldfish investigated with the optomotor response is "color blind". Vision Res 36:4025–4034

    Google Scholar 

  • Snyder AW, Miller WH (1977) Photoreceptor diameter and spacing for highest resolving power. J Opt Soc Am 67:696–698

    CAS  PubMed  Google Scholar 

  • Spekreijse H, Wietsma JJ, Neumeyer C (1991) Induced colour blindness in goldfish: a behavioral and electrophysiological study. Vision Res 31:551–562

    Article  CAS  PubMed  Google Scholar 

  • Sperling HG, Harwerth RS (1971) Red-green cone interactions in the increment-threshold spectral sensitivity in primates. Science 172:180–184

    CAS  PubMed  Google Scholar 

  • Stell WK, Hárosi FI (1976) Cone structure and visual pigment content in the retina of the goldfish. Vision Res 16:647–657

    Article  CAS  PubMed  Google Scholar 

  • Wässle H (1986) Sampling of visual space by retinal ganglion cells. In: Pettigrew JD, Sanderson KJ, Levick WR (eds) Visual neuroscience. Cambridge University Press, Cambridge, pp 19–32

  • Zeki S (1993) A vision of the brain. Blackwell, Oxford

  • Zrenner E, Krüger CJ (1981) Ethambutol mainly affects the function of red-green opponent neurons. Doc Ophthalmol Proc Ser 27:13–25

    Google Scholar 

Download references

Acknowledgements

For technical assistance I would like to thank M. Grosz, J. Altmayer, W. Hoch, H. Huber, and the workshop of the Institute. Mark von Campenhausen improved the setup at a very early stage of the study; Ludmila Belovsky and Carlos Mora-Ferrer performed part of the training experiments. For helpful discussions I am very grateful to Tom Reuter and Christoph von Campenhausen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Neumeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumeyer, C. Wavelength dependence of visual acuity in goldfish. J Comp Physiol A 189, 811–821 (2003). https://doi.org/10.1007/s00359-003-0457-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-003-0457-4

Keywords

Navigation