Skip to main content
Log in

Structural Similarity: Spectral Methods for Relaxed Blockmodeling

  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

In this paper we propose the concept of structural similarity as a relaxation of blockmodeling in social network analysis. Most previous approaches attempt to relax the constraints on partitions, for instance, that of being a structural or regular equivalence to being approximately structural or regular, respectively. In contrast, our approach is to relax the partitions themselves: structural similarities yield similarity values instead of equivalence or non-equivalence of actors, while strictly obeying the requirement made for exact regular equivalences. Structural similarities are based on a vector space interpretation and yield efficient spectral methods that, in a more restrictive manner, have been successfully applied to difficult combinatorial problems such as graph coloring. While traditional blockmodeling approaches have to rely on local search heuristics, our framework yields algorithms that are provably optimal for specific data-generation models. Furthermore, the stability of structural similarities can be well characterized making them suitable for the analysis of noisy or dynamically changing network data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ACHLIOPTAS, D., FIAT, A., KARLIN, A., and MCSHERRY, F. (2001), “Web Search via Hub Synthesis”, in Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS’01), pp. 500–509.

  • ALON, N., and KAHALE, N. (1997), “A Spectral Technique for Coloring Random 3-Colorable Graphs”, SIAM Journal on Computation, 26, 1733–1748.

    Article  MATH  MathSciNet  Google Scholar 

  • ARTIN, M. (1991), Algebra, Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • AZAR, Y., FIAT, A., KARLIN, A., MCSHERRY, F., and SAIA, J. (2001), “Spectral Analysis of Data”, in Proceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC), pp. 619–626.

  • BAI, Z., DEMMEL, J., and MCKENNEY, A. (1993), “On Computing Condition Numbers for the Nonsymmetric Eigenproblem”, ACM Transactions on Mathematical Software, 19, 202–223.

    Article  MATH  MathSciNet  Google Scholar 

  • BATAGELJ, V. (1997), “Notes on Blockmodeling”, Social Networks, 19, 143–155.

    Article  Google Scholar 

  • BATAGELJ, V., DOREIAN, P., and FERLIGOJ, A. (1992), “An Optimizational Approach to Regular Equivalence”, Social Networks, 14, 121–135.

    Article  Google Scholar 

  • BORGATTI, S. P., and EVERETT, M. G. (1992), “Notions of Position in Social Network Analysis”, Sociological Methodology, 22, 1–35.

    Article  Google Scholar 

  • BRANDES, U., and ERLEBACH, T. (eds.) (2005), Network Analysis: Methodological Foundations, Berlin, Heidelberg: Springer-Verlag.

    MATH  Google Scholar 

  • BRANDES, U., FLEISCHER, D., and LERNER, J. (2006), “Summarizing Dynamic Bipolar Conflict Structures”, IEEE Transactions on Visualization and Computer Graphics, special issue on Visual Analytics, 12, 1486–1499.

    Article  Google Scholar 

  • BRANDES, U., and LERNER, J. (2004), “Structural Similarity in Graphs”, in Proceedings of the 15th International Symposium on Algorithms and Computation (ISAAC’04), pp. 184–195.

  • BRANDES, U., and LERNER, J. (2006), “Coloring Random 3-Colorable Graphs with Non-Uniform Edge Probabilities”, in Proceedings of the 31st International Symposium on Mathematical Foundations of Computer Science (MFCS ’06), pp. 202–213.

  • BRANDES, U., and LERNER, J. (2008), “Visualization of Conflict Networks”, in Building and Using Datasets on Armed Conflicts, ed. Kauffmann, M., IOS Press, vol. 36 of NATO Science for Peace and Security Series E: Human and Societal Dynamics, pp. 169–188.

  • COJA-OGHLAN, A. (2005), “A Spectral Heuristic for Bisecting Random Graphs”, in Proceeding of the 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 850–859.

  • CVETKOVIĆ, D. M., DOOB, M., and SACHS, H. (1995), Spectra of Graphs, Heidelberg-Leipzig: Johann Ambrosius Barth.

    MATH  Google Scholar 

  • DOREIAN, P., BATAGELJ, V., and FERLIGOJ, A. (2005), Generalized Blockmodeling, Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • EVERETT,M. G., and BORGATTI, S. P. (1991), “Role Colouring a Graph”, Mathematical Social Sciences, 21, 183–188.

    Article  MATH  MathSciNet  Google Scholar 

  • EVERETT, M. G., and BORGATTI, S. P. (1994), “Regular Equivalence: General Theory”, Journal of Mathematical Sociology, 19, 29–52.

    Article  MATH  MathSciNet  Google Scholar 

  • FIALA, J., and PAULUSMA, D. (2003), “The Computational Complexity of the Role Assignment Problem”, in Proceedings of the 30th International Colloquium on Automata, Languages, and Programming (ICALP’03), Berlin Heidelberg: Springer-Verlag, pp. 817–828.

    Chapter  Google Scholar 

  • GAREY, M. R., and JOHNSON, D. S. (1979), Computers and Intractability: A Guide to the Theory of NP-completeness, San Francisco: Freeman and Company.

    MATH  Google Scholar 

  • GKANTSIDIS, C., MIHAIL, M., and ZEGURA, E. (2003), “Spectral Analysis of Internet Topologies”, in Proceedings of the IEEE INFOCOM’03, pp. 364– 374.

  • GODSIL, C. (1993), Algebraic Combinatorics, New York: Chapman & Hall.

    MATH  Google Scholar 

  • GODSIL, C., and ROYLE, G. (2001), Algebraic Graph Theory, New York: Springer.

    MATH  Google Scholar 

  • GOHBERG, I., LANCASTER, P., and RODMAN, L. (1986), Invariant Subspaces of Matrices with Applications, New York: John Wiley.

    MATH  Google Scholar 

  • GOLUB, G. H., and VAN LOAN, C. F. (1996), Matrix Computations, Baltimore,MD: John Hopkins University Press.

    MATH  Google Scholar 

  • KAISER, H. F. (1958), “The Varimax Criterion for Analytic Rotation in Factor Analysis”, Psychometrica, 23, 187–200.

    Article  MATH  Google Scholar 

  • KANNAN, R., VEMPALA, S., and VETTA, A. (2004), “On Clusterings: Good, Bad and Spectral”, Journal of the ACM, 51, 497–515.

    Article  MATH  MathSciNet  Google Scholar 

  • KIM, K. H., and ROUSH, F. W. (1984), “Group Relationships and Homomorphisms of Boolean Matrix Semigroups”, Journal of Mathematical Psychology, 28, 448–452.

    Article  MATH  MathSciNet  Google Scholar 

  • LORRAIN, F., and WHITE, H. C. (1971), “Structural Equivalence of Individuals in Social Networks”, Journal of Mathematical Sociology, 1, 49–80.

    Article  Google Scholar 

  • LUCZKOVICH, J. J., BORGATTI, S. P., JOHNSON, J. C., and EVERETT, M. G. (2003), “Defining andMeasuring Trophic Role Similarity in FoodWebs Using Regular Equivalence”, Journal of Theoretical Biology, 220, 303–321.

    Article  MathSciNet  Google Scholar 

  • MCSHERRY, F. (2001), “Spectral Partitioning of Random Graphs”, in Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS’01), pp. 529–537.

  • MILNER, R. (1980), A Calculus of Communicating Systems, Berlin: Springer Verlag.

    MATH  Google Scholar 

  • PAIGE, R., and TARJAN, R. E. (1987), “Three Partition Refinement Algorithms”, SIAM Journal on Computing, 16, 973–983.

    Article  MATH  MathSciNet  Google Scholar 

  • PAPADIMITRIOU, C., RAGHAVAN, P., TAMAKI, H., and VEMPALA, S. (2000), “Latent Semantic Indexing: A Probabilistic Analysis”, Journal of Computer and System Sciences, 61, 217–235.

    Article  MATH  MathSciNet  Google Scholar 

  • PATTISON, P. (1993), Algebraic Models for Social Networks, Cambridge, MA: Cambridge University Press.

    Book  Google Scholar 

  • SAILER, L. D. (1978), “Structural Equivalence: Meaning and Definition, Computation and Application”, Social Networks, 1, 73–90.

    Article  Google Scholar 

  • SCHRODT, P. A., DAVIS, S. G., and WEDDLE, J. L. (1994), “Political Science: KEDS-A Program for the Machine Coding of Event Data”, Social Science Computer Review, 12, 561–588.

    Article  Google Scholar 

  • STEWART, G. W., and SUN, J.-G. (1990), Matrix Perturbation Theory, New York: Academic Press.

    MATH  Google Scholar 

  • VAN DE VELDEN,M., and KIERS, H. A. L. (2005), “Rotation in Correspondence Analysis”, Journal of Classification, 22, 251–271.

    Article  MathSciNet  Google Scholar 

  • VEMPALA, S., and WANG, G. (2002), “A Spectral Algorithm for Learning Mixtures of Distributions”, in Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02).

  • WASSERMAN, S., and FAUST, K. (1994), Social Network Analysis: Methods and Applications, Cambridge MA: Cambridge University Press.

    Google Scholar 

  • WHITE, D. R. and REITZ, K. P. (1983), “Graph and Semigroup Homomorphisms on Networks of Relations”, Social Networks, 5, 193–234.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Lerner.

Additional information

We gratefully acknowledge financial support from DFG (grant Br 2158/2-3) and University of Konstanz under grant FP 626/08.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandes, U., Lerner, J. Structural Similarity: Spectral Methods for Relaxed Blockmodeling. J Classif 27, 279–306 (2010). https://doi.org/10.1007/s00357-010-9062-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00357-010-9062-8

Keywords

Navigation