Skip to main content

Advertisement

Log in

A review of wind turbine-oriented active flow control strategies

  • Review Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

To reduce the levelized cost of energy, the energy production, robustness and lifespan of horizontal axis wind turbines (HAWTs) have to be improved to ensure optimal energy production and operational availability during periods longer than 15–20 years. HAWTs are subject to unsteady wind loads that generate combinations of unsteady mechanical loads with characteristic time scales from seconds to minutes. This can be reduced by controlling the aerodynamic performance of the wind turbine rotors in real time to compensate the overloads. Mitigating load fluctuations and optimizing the aerodynamic performance at higher time scales need the development of fast-response active flow control (AFC) strategies located as close as possible to the torque generation, i.e., directly on the blades. The most conventional actuators currently used in HAWTs are mechanical flaps/tabs (similar to aeronautical accessories), but some more innovative concepts based on fluidic and plasma actuators are very promising since they are devoid of mechanical parts, have a fast response and can be driven in unsteady modes to influence natural instabilities of the flow. In this context, the present paper aims at giving a state-of-the-art review of current research in wind turbine-oriented flow control strategies applied at the blade scale. It provides an overview of research conducted in the last decade dealing with the actuators and devices devoted to developing AFC on rotor blades, focusing on the flow phenomena that they cause and that can lead to aerodynamic load increase or decrease. After providing some general background on wind turbine blade aerodynamics and on the atmospheric flows in which HAWTs operate, the review focuses on flow separation control and circulation control mainly through experimental investigations. It is followed by a discussion about the overall limitations of current studies in the wind energy context, with a focus on a few studies that attempt to provide a global efficiency assessment and wind energy-oriented energy balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reprinted from Jukes (2015), original figure 4; with permission from Elsevier

Fig. 5

Original figure 26 reproduced from Cooney et al. (2016); reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc

Fig. 6

Original figure 1 reproduced from Cooperman et al. (2014)

Fig. 7

Original figure 2 reproduced from Nikoueeyan et al. (2014b); reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc

Fig. 8

Original figure 2 reproduced from Cooperman et al. (2014)

Fig. 9

Original figure 8 reproduced from Baleriola et al. (2016)

Fig. 10

Original figure 20 reproduced from Troshin and Seifert (2013) with permission of Springer

Fig. 11

Original figure 9 reproduced from Barlas and van Kuik (2010) with permission from Elsevier

Fig. 12

Table reproduced from Pechlivanoglou (2013), page 111. Courtesy of Pechlivanoglou

Similar content being viewed by others

Abbreviations

\( a \) :

Axial velocity reduction factor on blade airfoil

\( a' \) :

Radial velocity increment on blade airfoil

\( c\left( r \right) \) :

Local airfoil chord at radial position r (m)

\( c_{\mu } \) :

Momentum coefficient

\( \dot{m}_{\text{inj}} \) :

Injected mass flow rate (kg/s)

\( v_{\text{inj}} \) :

Injection velocity (m/s)

\( r \) :

Radial position on the blade (m)

\( C_{\text{D}} \left( r \right) \) :

Local airfoil drag coefficient value at radial position r

\( C_{\text{L}} \left( r \right) \) :

Local airfoil lift coefficient value at radial position r

\( C_{{{\text{L}}\alpha }} \left( r \right) \) :

Lift curve slope in the linear region of \( C_{\text{L}} \left( r \right) \)

\( C_{\text{T}} \) :

Thrust coefficient

\( D \) :

Wind turbine rotor diameter (m)

\( L\left( r \right) \) :

Local airfoil lift value at radial position r (N/m)

\( R = \frac{D}{2} \) :

Wind turbine rotor radius (m)

\( T \) :

Thrust force (N)

\( U_{\infty } \) :

Upstream time-averaged velocity (m/s)

\( U_{\text{hub}} \) :

Upstream time-averaged velocity at hub height (m/s)

\( U_{\text{rel}} \left( r \right) \) :

Relative incoming flow velocity on airfoil at radial position r (m/s)

\( \alpha \left( r \right) \) :

Aerodynamic airfoil angle of attack at radial position r (°)

\( \alpha_{0} \left( r \right) \) :

Airfoil zero lift angle of attack at radial position r (°)

\( \beta_{\text{twist}} \left( r \right) \) :

Blade twist (°)

\( \beta_{\text{pitch}} \) :

Collective blade pitch setting (°)

\( \lambda = \frac{\varOmega R}{{U_{\infty } }} \) :

Wind turbine tip speed ratio

\( \varOmega \) :

Wind turbine rotor rotational velocity (rad/s)

References

  • Baleriola S, Leroy A, Loyer S, Devinant P, Aubrun S (2016) Circulation control on a rounded trailing-edge wind turbine airfoil using plasma actuators. J Phys Conf Ser 753(5):52001

    Article  Google Scholar 

  • Barlas TK, van Kuik GAM (2010) Review of state of the art in smart rotor control research for wind turbines. Prog Aerosp Sci 46(1):1–27

    Article  Google Scholar 

  • Ben-Harav A, Greenblatt D (2016) Plasma-based feed-forward dynamic stall control on a vertical axis wind turbine. Wind Energy 19(1):3–16

    Article  Google Scholar 

  • Berg DE, Zayas JR, Lobitz DW, van Dam CP, Chow R, Baker JP (2007) Active aerodynamic load control of wind turbine blades. In: ASME/JSME 2007 5th joint fluids engineering conference, Volume 2: Fora, Parts A and B. San Diego, California, USA, July 30–August 2, 2007. ISBN 0-7918-4289-4

  • Berg JC, Barone MF, Yoder NC (2014) SMART wind turbine rotor: data analysis and conclusions. SANDIA REPORT SAND2014-0712. https://www.energy.gov/sites/prod/files/smart_wind_turbine_data.pdf

  • Braud C, Guilmineau E (2016) Jet flow control at the blade scale to manipulate lift. J Phys Conf Ser 753(2):022031

    Article  Google Scholar 

  • Brownstein ID, Szlatenyi CS, Breuer KS (2014) Enhanced aerodynamic performance of a wind turbine airfoil section using plasma actuation. AIAA Paper 2014-1244

  • Burton T, Sharpe D, Jenkins N, Bossanyi E (2001) Wind energy handbook. Wiley, Chichester

    Book  Google Scholar 

  • Cattafesta LN III, Sheplak M (2011) Actuators for active flow control. Annu Rev Fluid Mech 43:247–272

    Article  MATH  Google Scholar 

  • Chawla JS, Suryanarayanan S, Puranik B et al (2014) Efficiency improvement study for small wind turbines through flow control. Sustain Energy Technol Assess 7:195–208. doi:10.1016/j.seta.2014.06.004

    Google Scholar 

  • Chen H, Qin N (2017) Trailing-edge flow control for wind turbine performance and load control. Wind Energy 105:419–435

    Google Scholar 

  • Cooney J (2009) Feasibility of plasma actuators for active flow control over wind turbine blades. AIAA Paper 2009-218

  • Cooney J, Szlatenyi CS, Fine NE (2016) The development and demonstration of a plasma flow control system on a 20 kW wind turbine. AIAA Paper 2016-1302

  • Cooperman AM, van Dam CP (2015) Closed-loop control of a microtab-based load control system. J Aircr 52(2):387–394

    Article  Google Scholar 

  • Cooperman A, Blaylock M, van Dam CP (2014) Experimental and simulated control of lift using trailing edge devices. J Phys Conf Ser 555(1):012019

    Article  Google Scholar 

  • Counihan J (1975) Adiabatic atmospheric boundary layers: a review and analysis of data from the period 1880–1972. Atmos Environ 9:871–905

    Article  Google Scholar 

  • Crowther WJ, Jabbal M, Liddle SC (2010) Flow control fallacies: a review of common pitfalls in flow control research. Proc IMechE Part G J Aerosp Eng 225(1):1–11

    Article  Google Scholar 

  • De Vries H, van der Weide ETA, Hoeijmakers HWM (2014) Synthetic jet actuation for load control. J Phys Conf Ser 555(1):12026

    Article  Google Scholar 

  • Ekaterinaris JA (2004) Prediction of active flow control performance on airfoils and wings. Aerosp Sci Technol 8:401–410. doi:10.1016/j.ast.2004.02.003

    Article  MATH  Google Scholar 

  • ESDU Engineering Sciences Data Unit (1985) Characteristics of atmospheric turbulence near the ground. Item No 85020, ISBN 978 0 85679 526 8

  • ETIP Wind (2016) Strategic research and innovation agenda. 2016. https://etipwind.eu/files/reports/ETIPWind-SRIA-2016.pdf

  • Feng LH, Jukes TN, Choi KS, Wang JJ (2012) Flow control over a NACA 0012 airfoil using dielectric-barrier-discharge plasma actuator with a Gurney flap. Exp Fluids 52(6):1533–1546

    Article  Google Scholar 

  • Ferreira et al (2016) Results of the AVATAR project for the validation of 2D aerodynamic models with experimental data of the DU95W180 airfoil with unsteady flap. J Phys Conf Ser 753:022006

    Article  Google Scholar 

  • Greenblatt D, Lautman R (2015) Inboard/outboard plasma actuation on a vertical-axis wind turbine. Renew Energy 83:1147–1156. doi:10.1016/j.renene.2015.05.020

    Article  Google Scholar 

  • Greenblatt D, Schulman M, Ben-Harav A (2012) Vertical axis wind turbine performance enhancement using plasma actuators. Renew Energy 37:345–354. doi:10.1016/j.renene.2011.06.040

    Article  Google Scholar 

  • Gross A, Fasel HF (2012) Flow control for NREL S822 wind turbine airfoil. AIAA J 50:2779–2790. doi:10.2514/1.J051628

    Article  Google Scholar 

  • Holst D, Bach AB, Nayeri CN, Paschereit CO, Pechlivanoglou G (2015) Wake analysis of a finite width gurney flap. J Eng Gas Turbines Power 138(6):62602

    Article  Google Scholar 

  • Johnson SJ, van Dam CP, Berg D (2008) Active load control techniques for wind turbines. SANDIA REPORT SAND2008-4809. http://windpower.sandia.gov/other/084809.pdf

  • Johnson SJ, Baker JP, van Dam CP, Berg D (2010) An overview of active load control techniques for wind turbines with an emphasis on microtabs. Wind Energy 13:239–253

    Article  Google Scholar 

  • Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. Tech rep NREL, NREL/TP-500-38060

  • Jukes TN (2015) Smart control of a horizontal axis wind turbine using dielectric barrier discharge plasma actuators. Renew Energy 80:644–654. doi:10.1016/j.renene.2015.02.047

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows, their structure and measurements. Oxford University Press, Oxford

    Google Scholar 

  • Kotsonis M, Pul R, Veldhuis L (2014) Influence of circulation on a rounded-trailing-edge airfoil using plasma actuators. Exp Fluids 55(7):1772

    Article  Google Scholar 

  • Maldonado V, Farnsworth J, Gressick W, Amitay M (2010) Active control of flow separation and structural vibrations of wind turbine blades. Wind Energy 13:221–237. doi:10.1002/we.336

    Article  Google Scholar 

  • Meijerink JAW, Hoeijmakers HWM (2011) Plasma actuators for active flow control on wind turbine blades. AIAA Paper 2011-3353

  • Mücke T, Kleinhans D, Peinke J (2010) Atmospheric turbulence and its influence on the alternating loads on wind turbines. Wind Energy 14(2):301–316

    Article  Google Scholar 

  • Nelson RC, Corke TC, Othman H, et al. (2008) A smart wind turbine blade using distributed plasma actuators for improved performance. AIAA Paper 2008-1312

  • Niether S, Bobusch B, Marten D et al (2015) Development of a fluidic actuator for adaptive flow control on a thick wind turbine airfoil. J Turbomach 137:61003. doi:10.1115/1.4028654

    Article  Google Scholar 

  • Nikoueeyan P, Strike JA, Magstadt AS, Hind MD, Naughton JW (2014a) Gurney flap control authority on a pitching wind turbine airfoil. AHS 70th annual forum proceedings, May 2014, pp 3147–3161. SKU #: 70-2014-0103

  • Nikoueeyan P, Strike JA, Magstadt AS, Hind MD, Naughton JW (2014b) Aerodynamic response of a wind turbine airfoil to Gurney flap deployment. AIAA Paper 2014-2146

  • Pechlivanoglou G (2013) Passive and active flow control solutions for wind turbine blades. PhD Dissertation, Technical University of Berlin

  • Pechlivanoglou GK, Wagner J, Nayeri CN, Paschereit CO (2010) Active aerodynamic control of wind turbine blades with high deflection flexible flaps. AIAA Paper 2010-644

  • Peinke J, Barth S, Böttcher F, Heinemann D, Lange B (2004) Turbulence, a challenging problem for wind energy. Phys A 338:187–193

    Article  Google Scholar 

  • Pereira R, van Bussel GJW, Timmer WA (2014) Active stall control for large offshore horizontal axis wind turbines; a conceptual study considering different actuation methods. J Phys Conf Ser 555:12082. doi:10.1088/1742-6596/555/1/012082

    Article  Google Scholar 

  • Sathe A, Mann J, Barlas T, Bierbooms W, van Bussel GJW (2013) Influence of atmospheric stability on wind turbine loads. Wind Energy 16:1013–1032

    Article  Google Scholar 

  • Schlipf DJ, Kühn M (2013) Nonlinear model predictive control of wind turbines using LIDAR. Wind Energy 16:1107–1129

    Article  Google Scholar 

  • Schubel PJ, Crossley RJ (2012) Wind turbine blade design. Energies 5(9):3425–3449

    Google Scholar 

  • Shun S, Ahmed NA (2012) Wind turbine performance improvements using active flow control techniques. Procedia Eng 49:83–91. doi:10.1016/j.proeng.2012.10.115

    Article  Google Scholar 

  • Somers DM (1997) Design and experimental results for the S809 airfoil. Tech rep NREL, NREL/SR-440-6918

  • Stalnov O, Kribus A, Seifert A (2010) Evaluation of active flow control applied to wind turbine blade section. J Renew Sustain Energy 2:063101

    Article  Google Scholar 

  • Tanaka M, Amemori K, Matsuda H, et al. (2013) Field test of plasma aerodynamic controlled wind turbine. In: EWEA conference, February 4–7, 2013, Vienna, Austria

  • Troshin V, Seifert A (2013) Performance recovery of a thick turbulent airfoil using a distributed closed-loop flow control system. Exp Fluids 54:1443

    Article  Google Scholar 

  • Van Kuik J et al (2016) Long-term research challenges in wind energy—a research agenda by the European Academy of Wind Energy. Wind Energ Sci 1:1–39

    Article  Google Scholar 

  • Vey S, Marten D, Pechlivanoglou G, Nayeri CN, Paschereit CO (2015) Experimental and numerical investigations of a small research wind turbine. AIAA Paper 2015-3392

  • Wagner R, Pedersen TF, Courtney M, Antoniou I, Davoust S, Rivera RL (2014) Power curve measurement with a nacelle mounted lidar. Wind Energy 17:1441–1453

    Google Scholar 

  • Walker S, Segawa T (2012) Mitigation of flow separation using DBD plasma actuators on airfoils: a tool for more efficient wind turbine operation. Renew Energy 42:105–110. doi:10.1016/j.renene.2011.09.001

    Article  Google Scholar 

  • Wang G, Walczak J, Elhadidi B, Glauser M (2011) Preliminary investigation of the active flow control benefits on wind turbine blades. AIAA Paper 2011-3611

  • Wetzel DA, Griffin J, Cattafesta LN (2013) Experiments on an elliptic circulation control aerofoil. J Fluid Mech 730:99–144

    Article  MATH  Google Scholar 

  • Xu HY, Qiao CL, Ye ZY (2016) Dynamic stall control on the wind turbine airfoil via a co-flow jet. Energies 9(6):429

    Article  Google Scholar 

  • Zhang M, Yu W, Xu J (2014) Aerodynamic physics of smart load control for wind turbine due to extreme wind shear. Renew Energy 70:204–210

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Aubrun.

Appendix

Appendix

See Table 1

Table 1 Summary of the main cited experimental works related to active flow control and dedicated to wind energy applications

.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aubrun, S., Leroy, A. & Devinant, P. A review of wind turbine-oriented active flow control strategies. Exp Fluids 58, 134 (2017). https://doi.org/10.1007/s00348-017-2412-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-017-2412-0

Navigation