Skip to main content

Flow Control Devices for Wind Turbines

  • Chapter
  • First Online:
Energy Harvesting and Energy Efficiency

Abstract

The following chapter provides an overview about available knowledge, references and investigations on the active and passive flow control devices, initially developed for aeronautic industry that are currently being investigated and introduced on wind turbines. The main goal pursued with the introduction of these devices is to delay the boundary layer separation and enhance/suppress turbulences. The aim is to achieve a lift enhancement, drag reduction or flow-induced noise reduction among other parameters. However, achieving these goals present some issues, because the improvement of one of these parameters may suppose an undesired effect in another. For this reason it is necessary to study in detail each one of these devices, their operating concept, applications and their main advantages and drawbacks. Depending on the flow control nature, devices can be classified as actives or passives. Passive techniques allow to improve the performance of the wind turbines without external energy expenditure whereas active techniques require external energy for their activation. There are a lot of devices and in this chapter there have been compiled some of the most important ones, both passives devices (Vortex Generators , Microtabs, Spoilers, Fences, Serrated trailing edge) and actives devices (Trailing edge flaps, Air Jet Vortex Generators, Synthetic Jets).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AcVG:

Actuator Vortex Generator

AFC:

Active Flow Control

AJVG:

Air Jet Vortex Generator

CFD:

Computational Fluid Dynamics

COE:

Cost of Energy

DS:

Delay Stall

DOF:

Degree of Freedom

DTU:

Danmarks Tekniske Universitet

EWEA:

Energy Wind Energy Association

FEM:

Finite Element Method

VG:

Vortex Generator

LE:

Leading Edge

MC:

Mid Chord

MDO:

Multidisciplinary Design Optimization

NREL:

National Renewable Energy Laboratory

O&M:

Operation and Maintenance

RANS:

Reynolds Averaged Navier Stokes

RWT:

Reference Wind Turbine

SST:

Shear Stress Transport

TE:

Trailing Edge

PVGJ:

Pulsed Vortex Generator Jet

EC :

Kinetic Energy

Ļ:

Density

t:

Time

CL :

Lift Coefficient

CD :

Drag Coefficient

A:

Area

v:

Velocity

Ī±:

Angle of Attack

c:

Chord

b:

Span

h:

Height

References

  1. The European Wind Energy Association (EWEA) (2015) Wind in power: European statistics. http://www.ewea.org/fileadmin/files/library/publications/statistics/EWEA-Annual-Statistics-2014.pdf

  2. The Global Wind Energy Council (GWEC) (2015) Global wind statistics 2015. http://www.gwec.net/wp-content/uploads/vip/GWEC-PRstats-2015_LR_corrected.pdf

  3. Johnson SJ, Van Dam CP, Berg DE (2008) Active load control techniques for wind turbines. Sandia National Laboratories. http://windpower.sandia.gov/other/084809.pdf. doi:10.2172/943932

  4. Committee on Assessment of Research Needs for Wind Turbine Rotor Materials Technology (1991) Assessment of research needs for wind turbine rotor materials technology. National Academy Press, Washington

    BookĀ  Google ScholarĀ 

  5. Poore R, Lettenmaier T (2003) Alternative design study report: WindPACT advanced wind turbine drive train designs study. National Renewable Energy Laboratory. http://www.nrel.gov/docs/fy03osti/33196.pdf. doi:10.2172/15004456

  6. Wood RM (2002) A discussion of aerodynamic control effectors (ACEs) for unmanned air vehicles (UAVs). Paper presented at AIAAā€™s 1st technical conference and workshop on unmanned aerospace vehicle, systems, technologies and operations, Portsmouth, 20ā€“23 May 2002. doi:10.2514/6.2002-3494

  7. Corten GP (2007) Vortex blades, oral presentation, WindPower 2007, Los Angeles

    Google ScholarĀ 

  8. Taylor HD (1947) The elimination of diffuser separation by vortex generators. United Aircraft Corporation Report No. R-4012-3

    Google ScholarĀ 

  9. Fernandez-Gamiz U, Velte CM, RĆ©thorĆ© PE, SĆørensen NN, Egusquiza E (2016) Testing of self-similarity and helical symmetry in vortex generator flow simulations. Wind Energy 19(6):1043ā€“1052. doi:10.1002/we.1882

    ArticleĀ  Google ScholarĀ 

  10. Pearcey HH (1961) Introduction to shock induced separation and its prevention by design and boundary layer control. In: Lachmann GV (ed) Boundary layer and flow control. Its principles and applications, vol 2. Pergamon Press, Oxford, pp 1170ā€“1355. doi:10.1016/B978-1-4832-1323-1.50021-X

  11. Godard G, Stanislas M (2006) Control of a decelerated boundary layer. Part 1: optimization of passive vortex generators. Aerosp Sci Technol 10(3):181ā€“191. doi:10.1016/j.ast.2005.11.007

    ArticleĀ  Google ScholarĀ 

  12. Bender EE, Anderson BH, Yagle PJ (1999) Vortex generator modeling for Navier-Stokes codes. In: 3rd ASME/JSME joint fluids engineering conference, San Francisco, 18ā€“23 July 1999

    Google ScholarĀ 

  13. JirĆ”sek A (2005) Vortex-generator model and its application to flow control. J Aircr 42(6):1486ā€“1491. doi:10.2514/1.12220

    ArticleĀ  Google ScholarĀ 

  14. Fernandez-Gamiz U, RĆ©thorĆ© PE, SĆørensen NN, Velte CM, Zahle F, Egusquiza E (2012) Comparison of four different models of vortex generators. In: Proceedings of EWEA 2012ā€”European wind energy conference & exhibition. European Wind Energy Association (EWEA)

    Google ScholarĀ 

  15. Velte CM, Okulov VL, Hansen MOL (2011) Alteration of helical vortex core without change in flow topology. Phys Fluids 23(5):051707. doi:10.1063/1.3592800

    ArticleĀ  Google ScholarĀ 

  16. Zamorano-Rey G, Garro B, Fernandez-Gamiz U, Zulueta-Guerrero E (2015) A computational study of the variation of the incidence angle in a vortex generator. DYNA New Technol 2(1):1ā€“13. doi:10.6036/NT7357

    Google ScholarĀ 

  17. Ƙye S (1995) The effect of vortex generators on the performance of the ELKRAFT 1000Ā kW turbine. In: 9th IEA symposium on aerodynamics of wind turbines, Stockholm

    Google ScholarĀ 

  18. Miller GE (1984) Comparative performance tests on the Mod-2, 2.5-MW wind turbine with and without vortex generators. In: DOE/NASA workshop on horizontal axis wind turbine technology, Cleveland

    Google ScholarĀ 

  19. Bak C, Bitsche R, Yde A, Kim T, Hansen MH, Zahle F, Gaunaa M, Blasques JPAA, DĆøssing M, Wedel H, Jens J, Behrens T (2012) Light rotor: the 10-MW reference wind turbine. In: Proceedings of EWEA 2012ā€”European wind energy conference & exhibition. European wind energy association (EWEA)

    Google ScholarĀ 

  20. Bak C, Zahle F, Bitsche R, Kim T, Yde A, Henriksen LC, Hansen MH, Blasques JPAA, Gaunaa M, Natarajan A (2013) The DTU 10-MW reference wind turbine, Danish Wind Power Research, Fredericia, 27 May 2013

    Google ScholarĀ 

  21. Troldborg N, Zahle F, SĆørensen N (2015) Simulation of a MW rotor equipped with vortex generators using CFD and an actuator shape model. In: 53rd AIAA aerospace sciences meeting, AIAA SciTech. doi:10.2514/6.2015-1035

  22. Wilcox DC (2006) Turbulence modeling for CFD. DCW Industries, La CaƱada

    Google ScholarĀ 

  23. Menter FR (1993) Zonal two equation k-Ļ‰ turbulence models for aerodynamic flows. AIAA J. paper 93-2906. doi:10.2514/6.1993-2906

  24. Chow R, Van Dam CP (2006) Unsteady computational investigations of deploying load control microtabs. J Aircr 43(5):1458ā€“1469. doi:10.2514/1.22562

    ArticleĀ  Google ScholarĀ 

  25. Yen DT, Van Dam CP, BrƤuchle F, Smith RL, Collins, SD (2000) Active load control and lift enhancement using MEM translational tabs. In: Proceedings of the fluids conference and exhibit, Denver, 19ā€“22 June 2000. doi:10.2514/6.2000-2242

  26. Tsai KC, Pan CT, Cooperman AM, Johnson SJ, Van Dam CP (2015) An innovative design of a microtab deployment mechanism for active aerodynamic load control. Energies 8(6):5885ā€“5897. doi:10.3390/en8065885

    ArticleĀ  Google ScholarĀ 

  27. Oerlemans S, Fisher M, Maeder T, Kƶgler K (2009) Reduction of wind turbine noise using optimized airfoils and trailing-edge serrations. AIAA J 47(6):1470ā€“1481. doi:10.2514/1.38888

    ArticleĀ  Google ScholarĀ 

  28. Stiesdal H, Enevoldsen PB (2003) Flexible serrated trailing edge for wind turbine rotor blade. European Patent Office, EP 1 314 885 B1, 28 May 2003

    Google ScholarĀ 

  29. Howe M (1991) Noise produced by a sawtooth trailing edge. J Acoust Soc Am 90(1):482ā€“487. doi:10.1121/1.401273

    ArticleĀ  Google ScholarĀ 

  30. Oerlemans S, Schepers J, Guidati G, Wagner, S (2001) Experimental demonstration of wind turbine noise reduction through optimized airfoil shape and trailing-edge serrations. In: Proceedings of the European wind energy conference and exhibition, Copenhagen, 2ā€“6 July 2001

    Google ScholarĀ 

  31. Quell P, Petsche M (2009) Rotor blade for a wind power station. US Patent 7,585,157 B2, 8 Sept 2009

    Google ScholarĀ 

  32. Chow R, Van Dam CP (2011) Inboard stall and separation mitigation techniques on wind turbine rotors. In: 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Orlando, 4ā€“7 January 2011. doi:10.2514/6.2011-152

  33. Lenz K, Fuglsang P (2008) Wind turbine having a spoiler with effective separation of airflow. European Patent Office, EP 2 141 358 A1, 12 Dec 2008

    Google ScholarĀ 

  34. Wallis RA (1960) A preliminary note on a modified type of air jet for boundary layer control. Aeronautical Research Council, Current-Paper 513, London

    Google ScholarĀ 

  35. Johnston J, Nishi M (1990) Vortex generator jetsā€“a means for passive and active control of boundary layer separation. AIAA J 28(6):989ā€“994. doi:10.2514/3.25155

    ArticleĀ  Google ScholarĀ 

  36. Compton DA, Johnston JP (1992) Streamwise vortex production by pitched and skewed jets in a turbulent boundary layer. AIAA J 30(3):640ā€“647. doi:10.2514/3.10967

    ArticleĀ  Google ScholarĀ 

  37. James RD, Jacobs JW, Glezer A (1996) A round turbulent jet produced by an oscillating diaphragm. Phys Fluids 8(9):2484ā€“2495. doi:10.1063/1.869040

    ArticleĀ  Google ScholarĀ 

  38. Pechlivanoglou G (2013) Passive and active flow control solutions for wind turbine blades. Dissertation, Technische Universitat Berlin

    Google ScholarĀ 

  39. Seifert A, Bachar T, Koss D, Shepshelovich M, Wygnanski I (1993) Oscillatory blowing: a tool to delay boundary-layer separation. AIAA J 31(11):2052ā€“2060. doi:10.2514/3.49121

    ArticleĀ  Google ScholarĀ 

  40. Donovan JF, Kral LD, Cary AW (1998) Active flow control applied to an airfoil. In: 36th AIAA aerospace sciences meeting and exhibit, Reno, Nevada. doi:10.2514/6.1998-210

  41. Krohn S, Morthorst PE, Awerbuch S (2009) The economics of wind energy, a report by the European wind energy association. http://www.ewea.org/fileadmin/files/library/publications/reports/Economics_of_Wind_Energy.pdf

Download references

Acknowledgements

I would like to take the opportunity to thank Dr. Unai Fernandez Gamiz, from Nuclear Engineering and Fluid Mechanics Department of University of the Basque Country of Vitoria-Gasteiz, for his support for the performance of this chapter, and his willingness to share bibliography, time and knowledge. This work was supported by both the Government of the Basque Country and the University of the Basque Country UPV/EHU through the SAIOTEK (S-PE11UN112) and EHU12/26 research programs, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to IƱigo Aramendia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Aramendia, I., Fernandez-Gamiz, U., Ramos-Hernanz, J.A., Sancho, J., Lopez-Guede, J.M., Zulueta, E. (2017). Flow Control Devices for Wind Turbines. In: Bizon, N., Mahdavi Tabatabaei, N., Blaabjerg, F., Kurt, E. (eds) Energy Harvesting and Energy Efficiency. Lecture Notes in Energy, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-49875-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49875-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49874-4

  • Online ISBN: 978-3-319-49875-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics