Skip to main content
Log in

Surface topography measurements of the bouncing droplet experiment

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A free-surface synthetic Schlieren (Moisy et al. in Exp Fluids 46:1021–1036, 2009; Eddi et al. in J Fluid Mech 674:433–463, 2011) technique has been implemented in order to measure the surface topography generated by a droplet bouncing on a vibrating fluid bath. This method was used to capture the wave fields of bouncers, walkers, and walkers interacting with boundaries. These wave profiles are compared with existing theoretical models and simulations and will prove valuable in guiding their future development. Specifically, the method provides insight into what type of boundary conditions apply to the wave field when a bouncing droplet approaches a submerged obstacle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Blanchette F (2016) Modeling the vertical motion of drops bouncing on a bounded fluid reservoir. Phys Fluids (1994-Present) 28(3):032104

    Article  MathSciNet  Google Scholar 

  • Bush JWM (2010) Quantum mechanics writ large. Proc Natl Acad Sci 107:17455–17456

    Article  MathSciNet  MATH  Google Scholar 

  • Bush JWM (2015) Pilot-wave hydrodynamics. Annu Rev Fluid Mech 47:269–292

    Article  Google Scholar 

  • Bush JWM (2015) The new wave of pilot-wave theory. Phys Today 68(8):47

    Article  MathSciNet  Google Scholar 

  • Couder Y, Fort E, Gautier C-H, Boudaoud A (2005) From bouncing to floating: noncoalescence of drops on a fluid bath. Phys Rev Lett 94:177801

    Article  Google Scholar 

  • Couder Y, Protière S, Fort E, Boudaoud A (2005) Walking and orbiting droplets. Nature 437:208

    Article  Google Scholar 

  • Couder Y, Fort E (2006) Single-particle diffraction and interference at a macroscopic scale. Phys Rev Lett 97:154101

    Article  Google Scholar 

  • Dubertrand R, Hubert M, Schlagheck P, Vandewalle N, Bastin T, Martin J (May 2016) Scattering theory of walking droplets in the presence of obstacles. ArXiv e-prints

  • Eddi A, Fort E, Moisy F, Couder Y (2009) Unpredictable tunneling of a classical wave-particle association. Phys Rev Lett 102:240401

    Article  Google Scholar 

  • Eddi A, Sultan E, Moukhtar J, Fort E, Rossi M, Couder Y (2011) Information stored in Faraday waves: the origin of a path memory. J Fluid Mech 674:433–463

    Article  MathSciNet  MATH  Google Scholar 

  • Faraday M (1831) On a peculiar class of acoustical figures: and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Philos Trans R Soc Lond 121:299–340

    Article  Google Scholar 

  • Faria LM (2016) A model for Faraday pilot-waves over variable topography. Private communication

  • Fort E, Eddi A, Boudaoud A, Moukhtar J, Couder Y (2010) Path-memory induced quantization of classical orbits. Proc Natl Acad Sci 107(41):17515–17520

    Article  Google Scholar 

  • Gilet T (2016) Quantumlike statistics of deterministic wave-particle interactions in a circular cavity. Phys Rev E 93(4):042202

    Article  Google Scholar 

  • Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Harris DM, Liu T, Bush JWM (2015) A low-cost, precise piezoelectric droplet-on-demand generator. Exp Fluids 56(4):83

    Article  Google Scholar 

  • Harris DM (2015) The pilot-wave dynamics of walking droplets in confinement. PhD thesis, Massachussets Institute of Technology

  • Harris DM, Moukhtar J, Fort E, Couder Y, Bush JWM (2013) Wavelike statistics from pilot-wave dynamics in a circular corral. Phys Rev E 88:011001

    Article  Google Scholar 

  • Harris DM, Bush JWM (2014) Droplets walking in a rotating frame. J Fluid Mech 739:444–464

    Article  Google Scholar 

  • Harris DM, Bush JWM (2015) Generating uniaxial vibration with an electrodynamic shaker and external air bearing. J Sound Vib 334:255–269

    Article  Google Scholar 

  • Labousse M (2014) Investigation of a path-memory dynamics: a theoretical trial. Université Pierre et Marie Curie UPMC Paris VI, Theses

  • Milewski PA, Galeano-Rios CA, Nachbin A, Bush JWM (2015) Farady pilot-wave dynamics. J Fluid Mech 778:361–388

    Article  MathSciNet  MATH  Google Scholar 

  • Moisy F, Rabaud M, Salsac K (2009) A synthetic schlieren method for the measurement of the topography of a liquid interface. Exp Fluids 46:1021–1036

    Article  Google Scholar 

  • Molácek J, Bush WM (2012) A quasi-static model of drop impact. Phys Fluids 24:127103

    Article  MATH  Google Scholar 

  • Molácek J, Bush WM (2013a) Drops bouncing on a vibrating bath. J Fluid Mech 727:582–611

    Article  MATH  Google Scholar 

  • Molácek J, Bush WM (2013b) Drops walking on a vibrating bath: towards a hydrodynamic pilot-wave theory. J Fluid Mech 727:612–647

    Article  MATH  Google Scholar 

  • Oza AU, Rosales RR, Bush JWM (2013) A trajectory equation for walking droplets. J Fluid Mech 737:552–570

    Article  MathSciNet  MATH  Google Scholar 

  • Oza AU, Harris DM, Rosales RR, Bush JWM (2014) Pilot-wave dynamics in a rotating frame. J Fluid Mech 744:404–429

    Article  MATH  Google Scholar 

  • Perrard S, Labousse M, Fort E, Couder Y (2014a) Chaos driven by interfering memory. Phys Rev Lett 113(10):104101

    Article  Google Scholar 

  • Perrard S, Labousse M, Miskin M, Fort E, Couder Y (2014b) Self-organization into quantized eigenstates of a classical wave-driven particle. Nat Commun 5:3219

    Article  Google Scholar 

  • Protière S, Boudaoud A, Couder Y (2006) Particle-wave association on a fluid interface. J Fluid Mech 554:85–108

    Article  MathSciNet  MATH  Google Scholar 

  • Pucci G, Sáenz PJ, Faria LM, Bush JW (2016) Non-specular reflection of walking droplets. J Fluid Mech 804:R3

    Article  MathSciNet  Google Scholar 

  • Terwagne D, Vandewalle N, Dorbolo S (2007) Lifetime of a bouncing droplet. Phys Rev E 76:056311

    Article  Google Scholar 

  • Vandewalle N, Terwagne D, Mulleners K, Gilet T, Dorbolo S (2006) Dancing droplets onto liquid surfaces. Phys Fluids 18:091106

    Article  Google Scholar 

  • Walker J (1978) Drops of liquid can be made to float on the liquid. What enables them to do so? Sci Am 238:151–158

    Article  Google Scholar 

  • Wind-Willassen Ø, Molàcek J, Harris DM, Bush JWM (2013) Exotic states of bouncing and walking droplets. Phys Fluids 25:082002

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.-T. Brun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damiano, A.P., Brun, PT., Harris, D.M. et al. Surface topography measurements of the bouncing droplet experiment. Exp Fluids 57, 163 (2016). https://doi.org/10.1007/s00348-016-2251-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2251-4

Keywords

Navigation