Skip to main content
Log in

A direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren (BOS) measurements

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

We present a new numerical method for reconstruction of instantaneous density volume from 3D background-oriented schlieren (3DBOS) measurements, with a validation on a dedicated flexible experimental BOS bench. In contrast to previous works, we use a direct formulation where density is estimated from measured deviation fields without the intermediate step of density gradient reconstruction. Regularization techniques are implemented to deal with the ill-posed problem encountered. The resulting high-dimensional optimization is conducted by conjugate gradient techniques. A parallel algorithm, implemented on graphics processing unit, helps to speed up the calculation. The resulting software is validated on synthetic BOS images of a 3D density field issued from a numerical simulation. Then, we describe a dedicated 3DBOS experimental facility which has been built to study various BOS settings and to assess the performance of the proposed numerical reconstruction process. Results on various datasets illustrate the potential of the method for flow characterization and measurement in real-world conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Alhaj O, Seume JR (2010) Optical investigation of profile losses in a linear turbine cascade. In: ASME turbo expo 2010: power for land, sea, and air. American Society of Mechanical Engineers, pp 1503–1513

  • Atcheson B, Ihrke I, Heidrich W, Tevs A, Bradley D, Magnor M, Seidel HP (2008) Time-resolved 3d capture of non-stationary gas flows. In: ACM Transactions on graphics (Proceedings of SIGGRAPH Asia) 27(5):132

  • Bauknecht A, Ewers B, Wolf C, Leopold F, Yin J, Raffel M (2015) Three-dimensional reconstruction of helicopter blade tip vortices using a multi-camera BOS system. Exp Fluids 56(1):1–13

    Article  Google Scholar 

  • Bichal A, Thurow B (2014) On the application of background oriented schlieren for wavefront sensing. Measur Sci Technol 25(1):015,001

    Article  Google Scholar 

  • Cabaleiro Aea (2013) Single camera time-resolved 3d tomographic reconstruction of a pulsed gas jet. J Vis

  • Champagnat F, Plyer A, Le Besnerais G, Davoust S, Le Sant Y (2011) Fast and accurate PIV computation using highly parallel iterative correlation maximization. Exp Fluids 50:1169–1182

    Article  Google Scholar 

  • Christian Wolf C, Gardner AD, Ewers B, Raffel M (2014) Starting process of a pulsed jet as seen by schlieren measurements. AIAA J 1–6

  • Dalziel SB, Hughes GO, Sutherland BR (2000) Whole-field density measurements by synthetic schlieren. Exp Fluids 28(4):322–335

    Article  Google Scholar 

  • Gac N, Vabre A, Mohammad-Djafari A, Rabanal A, Buyens F, et al. (2010) Gpu implementation of a 3d bayesian ct algorithm and its application on real foam reconstruction. In: The 1st CT meeting proceedings, pp 151–155

  • Goldhahn E, Seume J (2007) The background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field. Exp Fluids 43(2–3):241–249

    Article  Google Scholar 

  • Gross D, Heil U, Schulze R, Schoemer E, Schwanecke U (2009) Gpu-based volume reconstruction from very few arbitrarily aligned X-ray images. J Sci Comput 31(6):4204–4221

    MathSciNet  MATH  Google Scholar 

  • Hansen PC (1992) Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev 34(4):561–580

    Article  MathSciNet  MATH  Google Scholar 

  • Idier J (2010) Bayesian approach to Inverse problems, vol 35. Wiley, New York

    MATH  Google Scholar 

  • Ihrke I (2007) Reconstruction and rendering of time-varying natural phenomena. Ph.D. thesis, Max-Planck-Institut fur Informatik

  • Ihrke I, Magnor M (2004) Image-based tomographic reconstruction of flames. In: Boulic DPR (ed) Eurographics/ACM SIGGRAPH symposium on computer animation

  • Kak AC, Slaney M (2001) Principles of computerized tomographic imaging. Society for Industrial and Applied Mathematics

  • Kindler K, Goldhahn E, Leopold F, Raffel M (2007) Recent developments in background-oriented schlieren methods for rotor blade tip vortex measurements. Exp Fluids 43:233–240 (Cite par Sourguen 2012 comme un article BOS axisym par Abel)

    Article  Google Scholar 

  • Le Sant Y, Todoroff V, Bernard-Brunel A, Le Besnerais G, Micheli F, Donjat D (2014) Multi-camera calibration for 3dbos. In: Application of laser techniques to fluid mechanics. Lisbon

  • Leopold F, Ota M, Klatt D, Maeno K (2013) Reconstruction of the unsteady supersonic flow around a spike using the colored background oriented schlieren technique. J Flow Control Measur Vis 1(2):69–76

    Article  Google Scholar 

  • Meier G (2002) Computerized background-oriented schlieren. Exp Fluids 33(1):181–187

    Article  Google Scholar 

  • Ota M, Hamada K, Kato H, Maeno K (2011) Computed-tomographic density measurement of supersonic flow field by colored-grid background oriented schlieren (CGBOS) technique. Meas Sci Technol 22:104–111

    Article  Google Scholar 

  • Ota M, Hamada K, Maeno K (2010) Quantitative 3d density measurement of supersonic flow by colored grid background oriented schleiren (CGBOS) technique. In: 27th international congress aeronautical sciences (ICAS2010)

  • Pan Y, Whitaker R, Cheryauka A, Ferguson D (2010) Regularized 3d iterative reconstruction on a mobile c-arm CT. In: Proceedings of the first CT meeting, Salt Lake City

  • Plyer A, Le Besnerais G, Champagnat F (2014) Massively parallel Lucas Kanade optical flow for real-time video processing applications. J Real-Time Image Process 1–18

  • Raffel M (2015) Background-oriented schlieren (BOS) techniques. Exp Fluids 56(3):1–17

    Google Scholar 

  • Raffel M, Richard H, Yu Y, Meier G (2000) Background oriented stereoscopic schlieren (BOSS) for full scale helicopter vortex characterization. In: In 9th international symposium on flow visualization. Heriot-Watt University, Edinburgh

  • Schröder A, Over B, Geisler R, Bulit A, Schwane R, Kompenhans J (2009) Measurements of density fields in micro nozzle plumes in vacuum by using an enhanced tomographic background oriented schlieren (BOS) technique. In: 9th international symposium on measurement technology and intelligent instruments. Saint-Petersburg

  • Sourgen F, Haertig J, Rey C (2004) Comparison between background oriented schlieren measurements (BOS) and numerical simulations. In: 24th AIAA aerodynamic measurement technology and ground testing conference, Portland OR, USA, paper AIAA, vol 2602

  • Sourgen F, Leopold F, Klatt D (2012) Reconstruction of the density field using the colored background oriented schlieren technique (CBOS). Opt Lasers Eng 50:29–38

    Article  Google Scholar 

  • Tikhonov A, Arsenin V (1977) Solutions of ill-posed problems. Winston

  • Todoroff V, Le Besnerais G, Donjat D, Micheli FAP, Champagnat F (2014) Reconstruction of instantaneous 3d flow density fields by a new direct regularized 3dbos method. In: 17th international symposium on application of laser techniques to fluid mechanics, Lisbon

  • Todoroff V, Plyer A, Le Besnerais G, Champagnat F, Donjat D, Micheli F, Millan P (2012) 3D reconstruction of th density field of a jet using synthetic BOS images. In: 15th international symposium on flow visualization, Minsk

  • Venkatakrishnan L (2005) Density measurements in an axisymmetric underexpanded jet by background-oriented schlieren technique. AIAA J 43(7):1574–1579

    Article  Google Scholar 

  • Venkatakrishnan L, Meier G (2004) Density measurements using the background oriented schlieren technique. Exp Fluids 37(2):237–247

    Article  Google Scholar 

  • Venkatakrishnan L, Suriyanarayanan P (2009) Density field of supersonic separated flow past an afterbody nozzle using tomographic reconstruction of bos data. Exp Fluids 47:463–473

    Article  Google Scholar 

  • Vuillot F, Lupoglazoff N, Rahier G (2008) Double stream nozzles flow and noise computations and comparisons to experiments. In: 46th AIAA aerospace sciences meeting and exhibit

  • Wright S, Nocedal J (1999) Numer Opt, vol 2. Springer, New York

    Google Scholar 

  • Zeb MF, Ota M, Maeno K (2011) Quantitative measurement of heat flow in natural heat convection using color-stripe background oriented schlieren (CSBOS) method. J JSEM 11(Special Issue), s141–s146

  • Zhang B, Wu Z, Zhao M (2015) Deflection tomographic reconstructions of a three-dimensional flame structure and temperature distribution of premixed combustion. Appl Opt 54(6):1341–1349

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Donjat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicolas, F., Todoroff, ., Plyer, A. et al. A direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren (BOS) measurements. Exp Fluids 57, 13 (2016). https://doi.org/10.1007/s00348-015-2100-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-2100-x

Keywords

Navigation