Skip to main content
Log in

Impulse wave run-over: experimental benchmark study for numerical modelling

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This research intends to provide a detailed data basis for numerical modelling of impulse waves. Three tests are described involving a rectangular wave channel, in which a trapezoidal ‘breakwater’ was inserted to study wave run-over. In addition, a reference test is also described, in which the breakwater was removed. Two-dimensional impulse waves were generated by means of subaerial granular slides accelerated by a pneumatic landslide generator into the water body. Wave propagation and run-over over the artificial breakwater are documented by a set of high-quality photographs. Water surface profiles were recorded using capacitance wave gages upstream and downstream of the breakwater, and velocity vector fields were determined for the run-over zone by means of Particle Image Velocimetry. The measurements are compared with predictive formulae for wave features and wave non-linearity. The present data set involves both simple channel topography and wave features to allow for numerical simulations under basic laboratory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a :

Wave amplitude (L)

\( \overline{a} \) :

Test-averaged wave amplitude (L)

a M :

Maximum wave amplitude (L)

A M :

Relative maximum wave amplitude (–)

b :

Slide width (L)

c :

Wave celerity (LT−1)

c 1 :

Wave celerity of primary wave (LT−1)

c 2 :

Wave celerity of secondary wave (LT−1)

d g :

Grain diameter (L)

F :

Slide Froude number (–)

g :

Gravitational acceleration (LT−2)

h :

Still water depth (L)

H :

Wave height (L)

L :

Wave length (L)

m s :

Slide mass (M)

M :

Relative slide mass (–)

P :

Impulse product parameter (–)

s :

Slide thickness (L)

S :

Relative slide thickness (–)

t :

Time (T)

T :

Wave period (T)

T :

Wave type product (–)

U :

Ursell number (–)

v :

Particle displacement velocity (LT−1)

V s :

Slide impact velocity (LT−1)

\( {\rlap{-} V}_{\text{s}} \) :

Bulk slide volume (L3)

w :

Breakwater height (L)

x :

Streamwise coordinate (L)

x M :

Streamwise distance of maximum wave amplitude (L)

X M :

Relative distance of maximum wave amplitude (–)

z :

Vertical coordinate (L)

α :

Slide impact angle (°)

δ :

Dynamic bed friction angle (°)

Δt :

Temporal offset (T)

φ′:

Internal friction angle (°)

η :

Water surface displacement (L)

ξ :

Slide profile (L)

ρ g :

Grain density (ML−3)

ρ s :

Bulk slide density (ML−3)

CWG:

Capacitance wave gage

LDS:

Laser distance sensor

PIV:

Particle Image Velocimetry

rms:

Root-mean-square

References

  • Ataie-Ashtiani B, Shobeyri G (2008) Numerical simulation of landslide impulsive waves. Int J Numer Meth Fluids 56:209–232

    Article  MathSciNet  MATH  Google Scholar 

  • Dalrymple RA, Rogers BD (2006) Numerical modelling of water waves with the SPH method. Coast Eng 53:141–147. doi:10.1016/j.coastaleng.2005.10.004

    Article  Google Scholar 

  • Falappi S, Gallati M (2007) SPH simulation of water waves generated by granular landslides. Proceedings of the 32nd Congress of IAHR Venice 933:1–10. IAHR, Madrid

  • Fritz HM, Moser P (2003) Pneumatic landslide generator. Int J Fluid Power 4(1):49–57

    Google Scholar 

  • Fritz HM, Hager WH, Minor H-E (2001) Lituya Bay case: rockslide impact and wave run-up. Sci Tsunami Hazards 19(1):3–22

    Google Scholar 

  • Fritz HM, Hager WH, Minor H-E (2003) Landslide generated impulse waves. 1. Instantaneous flow fields. Exp Fluids 35:505–519. doi:10.1007/s00348-003-0659-0

    Article  Google Scholar 

  • Grilli ST, Losada MA, Martin F (1994) Characteristics of solitary wave breaking induced by breakwaters. J Waterw Port Coast Ocean Eng 120(1):74–92. doi:10.1061/(ASCE)0733-950X(1994)120:1(74)

    Article  Google Scholar 

  • Heller V (2007) Landslide generated impulse waves—prediction of near field characteristics. Ph.D. Thesis 17531, ETH Zurich, Zurich

  • Heller V, Hager WH (2010a) Impulse product parameter in landslide generated impulse waves. J Waterw Port Coast Ocean Eng (accepted)

  • Heller V, Hager WH (2010b) Wave types in landslide generated impulse waves. Ocean Eng (submitted)

  • Heller V, Hager WH, Minor H-E (2008) Scale effects in subaerial landslide generated impulse waves. Exp Fluids 44:691–703. doi:10.1007/s00348-007-0427-7

    Article  Google Scholar 

  • Huang C-J, Dong C-M (2001) On the interaction of a solitary wave and a submerged dike. Coast Eng 43(3–4):265–286. doi:10.1016/S0378-3839(01)00017-5

    Article  Google Scholar 

  • Kamphuis JW, Bowering RJ (1972) Impulse waves generated by landslides. In: Proceedings of 12th Coastal Engineering Conference, Washington DC, vol 1. ASCE, New York, pp 575–588

  • Le Méhauté B (1976) An introduction to hydrodynamics and water waves. Springer, New York

    MATH  Google Scholar 

  • Liu PL-F, Synolakis CE, Yeh HH (1991) Report on the international workshop on long-wave run-up. J Fluid Mech 229:675–688

    Article  MATH  Google Scholar 

  • Liu PL-F, Yeh H, Synolakis C (2008) Advanced numerical models for simulating tsunami waves and runup. Advances in coastal and ocean engineering, 10. World Scientific, Singapore

    Book  Google Scholar 

  • Mader CL, Gittings ML (2002) Modeling the 1958 Lituya Bay mega-tsunami, II. Sci Tsunami Hazards 20(5):11–43

    Google Scholar 

  • Miles JW (1980) Solitary waves. Annu Rev Fluid Mech 12:11–43

    Article  Google Scholar 

  • Montes S (1998) Hydraulics of open channel flow. ASCE Press, Reston VA

    Google Scholar 

  • Panizzo A, De Girolamo P, Petaccia A (2005) Forecasting impulse waves generated by subaerial landslides. J Geophys Res 110(C12025):1–23. doi:10.1029/2004JC002778

    Google Scholar 

  • Quecedo M, Pastor M, Herreros MI (2004) Numerical modelling of impulse wave generated by fast landslides. Int J Numer Meth Eng 59:1633–1656

    Article  MathSciNet  MATH  Google Scholar 

  • Reeve D, Chadwick A, Fleming C (2004) Coastal engineering: processes, theory and design practice. Taylor & Francis, London UK

    Google Scholar 

  • Schnitter G (1964) Die Katastrophe von Vaiont in Oberitalien (in German). Wasser- und Energiewirtschaft 56(2/3):61–69

    Google Scholar 

  • Schwaiger HF, Higman B (2007) Lagrangian hydrocode simulations of the 1958 Lituya Bay tsunamigenic rockslide. Geochem Geophys Geosyst 8(7):Q07006

    Article  Google Scholar 

  • Sorensen RM (1993) Basic wave mechanics for coastal and ocean engineers. Wiley, New York

    Google Scholar 

  • Ursell F (1953) The long-wave paradox in the theory of gravity waves. Proc Camb Philos Soc 49:685–694

    Google Scholar 

  • Weiss R, Wuennemann K (2007) Understanding tsunami by landslides as the next challenge for hazard, risk and mitigation: insight from multi-material hydrocode modeling. In: EOS Transactions AGU, San Francisco, 88(52):S51C-06

  • Zweifel A, Zuccalà D, Gatti D (2007) Comparison between computed and experimentally generated impulse waves. J Hydraul Eng 133(2):208–216

    Article  Google Scholar 

Download references

Acknowledgments

The first author was supported by the Swiss National Science Foundation, Grant 200020_119717/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge Fuchs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, H., Heller, V. & Hager, W.H. Impulse wave run-over: experimental benchmark study for numerical modelling. Exp Fluids 49, 985–1004 (2010). https://doi.org/10.1007/s00348-010-0836-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-010-0836-x

Keywords

Navigation