Skip to main content
Log in

Three-dimensional temporally resolved measurements of turbulence–flame interactions using orthogonal-plane cinema-stereoscopic PIV

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A new orthogonal-plane cinema-stereoscopic particle image velocimetry (OPCS-PIV) diagnostic has been used to measure the dynamics of three-dimensional turbulence–flame interactions. The diagnostic employed two orthogonal PIV planes, with one aligned perpendicular and one aligned parallel to the streamwise flow direction. In the plane normal to the flow, temporally resolved slices of the nine-component velocity gradient tensor were determined using Taylor’s hypothesis. Volumetric reconstruction of the 3D turbulence was performed using these slices. The PIV plane parallel to the streamwise flow direction was then used to measure the evolution of the turbulence; the path and strength of 3D turbulent structures as they interacted with the flame were determined from their image in this second plane. Structures of both vorticity and strain-rate magnitude were extracted from the flow. The geometry of these structures agreed well with predictions from direct numerical simulations. The interaction of turbulent structures with the flame also was observed. In three dimensions, these interactions had complex geometries that could not be reflected in either planar measurements or simple flame–vortex configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Boratav ON, Pelz RB (1996) Structures and structure functions in the inertial range of turbulence. Phys Fluids 9:1400–1415

    Article  MathSciNet  Google Scholar 

  • Brasseur JG, Lin W (2005) Kinematics and dynamics of small-scale vorticity and strain-rate structures in the transition from isotropic to shear turbulence. Fluid Dyn Res 36:357–384

    Article  MATH  MathSciNet  Google Scholar 

  • Chakraborty N, Swaminathan N (2007) Influence of the Damköhler number on turbulence–scalar interaction in premixed flames. I. Physical insight. Phys Fluids 19:0451,003

    Article  Google Scholar 

  • Chakraborty P, Balachandar S, Adrian RJ (2005) On the relationships between local vortex identification schemes. J Fluid Mech 535:189–214

    Article  MATH  MathSciNet  Google Scholar 

  • Charlette F, Meneveau C, Veynante D (2002) A power-law flame wrinkling model for LES of premixed turbulent combustion. Part 1: non-dynamic formulation and initial tests. Combust Flame 131(2):159–180

    Article  Google Scholar 

  • Cho Y, Kin JH, Cho T, Moon I, Yoon Y, Lee C (2004) Analysis of turbulent premixed flame structure using simultaneous PIV-OH PLIF. J Vis 7(1):43–54

    Article  Google Scholar 

  • Colin O, Ducros F, Veynante D, Poinsot T (2000) A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys Fluids 12(7):1843–1863

    Article  Google Scholar 

  • Cucitore R, Quadrio M, Baron A (1999) On the effectiveness and limitations of local criteria for the identification of a vortex. Eur J Mech B 18:261–282

    Article  MATH  MathSciNet  Google Scholar 

  • Damköhler G (1940) Der Einfluβ der Turbulenz auf die Flammengeschwindigkeit. Z Elektrochem 46:601–652

    Google Scholar 

  • Driscoll JF (2008) Turbulent premixed combustion—flamelet structure and turbulent burning velocities. Prog Energy Combust Sci 34:91–134

    Article  Google Scholar 

  • Dubief Y, Delcayre F (2000) On coherent-vortex identification in turbulence. J Turbul 1:1–22

    Article  MathSciNet  Google Scholar 

  • Filatyev SA, Driscoll JF, Carter CD, Donbar JM (2005) Measured properties of turbulent premixed flames for model assessment, including burning velocities, stretch rates and surface densities. Combust Flame 141(1):1–21

    Article  Google Scholar 

  • Ganapathisubramani B, Longmire EK, Marusic I, Pothos S (2005) Dual-plane piv technique to determine the complete velocity gradient tensor in a turbulent boundary layer. Exp Fluids 39(2):222–231

    Article  Google Scholar 

  • Ganapathisubramani B, Lakshminarasimhan K, Clemens NT (2007) Determination of complete velocity gradient tensor by using cinematographic stereoscopic PIV in a turbulent jet. Exp Fluids 42(6):923–939

    Article  Google Scholar 

  • Ganapathisubramani B, Lakshminarasimhan K, Clemens NT (2008) Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry. J Fluid Mech 598:141–175

    Article  MATH  Google Scholar 

  • Hambleton WT, Hutchins N, Marusic I (2006) Simultaneous orthogonal-plane particle image velocimetry measurements in a turbulent boundary layer. J Fluid Mech 560:53–64

    Article  MATH  Google Scholar 

  • Ishihara T, Kaneda Y, Yokokawa M, Itakura K, Uno A (2005) Energy spectrum in the near dissipation range of high resolution direct numerical simulation of turbulence. J Phys Soc Jpn 74:1464–1471

    Article  Google Scholar 

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 258:69–94

    Article  MathSciNet  Google Scholar 

  • Kadowaki S, Hasegawa T (2005) Numerical simulation of dynamics of premxied flames: flame instability and vortex–flame interaction. Prog Energy Comust Sci 31:193–241

    Article  Google Scholar 

  • Kähler CJ, Kompenhans J (2004) Investigation of the spatio-temporal flow structure in the buffer region of a turbulent boundary layer by means of multiplane stereo PIV. Exp Fluids 36(1):114–130

    Article  Google Scholar 

  • Kim KC, Yoon SY, Kim SM, Chun HH, Lee I (2006) An orthogonal-plane PIV technique for the investigations of three-dimensional vorticial structures in a turbulent boundary layer flow. Exp Fluids 40:876–883

    Article  Google Scholar 

  • Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech 13:82

    Article  MATH  MathSciNet  Google Scholar 

  • Lavoie P, Avallone G, De Gregorio F, Romano GP, Antonia RA (2007) Spatial resolution of PIV for the measurement of turbulence. Exp Fluids 43:39–51

    Article  Google Scholar 

  • Lawson NJ, Wu J (1997a) Three-dimensional particle image velocimetry: error analysis of stereoscopic techniques. Meas Sci Technol 8:894–900

    Article  Google Scholar 

  • Lawson NJ, Wu J (1997b) Three-dimensional particle image velocimetry: experimental error analysis of a digital angular stereoscopic system. Meas Sci Technol 8:1455–1464

    Article  Google Scholar 

  • Lewis B, Von Elbe G (1981) Combustion, flames and explosions of gases. Academic Press, New York

  • Louch DS, Bray KNC (2001) Vorticity in unsteady premixed flames: vortex pair-premixed flame interactions under imposed body forces and various degrees of heat release and laminar flame thickness. Combust Flame 125(4):1279–1309

    Article  Google Scholar 

  • Matsuda T, Sakakibara J (2005) On the vortical structure in a round jet. Phys Fluids 17:025106

    Article  Google Scholar 

  • Meneveau C, Poinsot T (1991) Stretching and quenching of flamelets in premixed turbulent combustion. Combust Flame 86(4):311–332

    Article  Google Scholar 

  • Moisy F, Jiménez J (2004) Geometry and clustering of intense structures in isotropic turbulence. J Fluid Mech 513:111–133

    Article  MATH  Google Scholar 

  • Mueller CJ, Driscoll JF, Reuss DL, Drake MC, Rosalik ME (1998) Vorticity generation and attenuation as vortices convect through a flame. Combust Flame 112(3):342–358

    Article  Google Scholar 

  • Müller UC, Bollig M, Peters N (1997) Approximations for burning velocities and Markstein numbers for lean hydrocarbon and methanol flames. Combust Flame 108(3):349–356

    Article  Google Scholar 

  • Mullin JA, Dahm WJA (2006) Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. Part II. Experimental results. Phys Fluids 18:1–28

    Google Scholar 

  • Nomura KK, Diamessis PJ (2000) The interaction of vorticity and rate-of-strain in homogeneous sheared turbulence. Phys Fluids 12:846

    Article  MATH  Google Scholar 

  • Pan KL, Qian J, Law CK, Shyy W (2002) The role of hydrodynamic instability in flame–vortex interaction. Proc Combust Inst 29:1695–1704

    Article  Google Scholar 

  • Pfadler S, Löffler M, Dinkelacker F, Leipertz A (2005) Measurement of the conditioned turbulence and temperature field of a premixed Bunsen burner by planar laser Rayleigh scattering and stereo particle image velocimetry. Exp Fluids 39(2):375–384

    Article  Google Scholar 

  • Pfadler S, Kerl J, Beyrau F, Leipertz A, Sadiki A, Scheuerlein J, Dinkelacker F (2009) Direct evaluation of the subgrid scale scalar flux in turbulent premixed flames with conditioned dual-plane stereo PIV. Proc Combust Inst 32:1723–1730

    Article  Google Scholar 

  • Poinsot T, Veynante D, Candel S (1991) Quenching processes and premixed turbulent combustion diagrams. J Fluid Mech 228:561–606

    Google Scholar 

  • Pope SB (2000) Turbulent Flows. Cambridge University Press, Cambridge

  • Raffel M, Willert C, Kompenhans J (1998) Particle image velocimetry: a practical guide. Springer, Berlin

    Google Scholar 

  • Renard PH, Thevenin D, Rolon J, Candel S (2000) Dynamics of flame/vortex interactions. Prog Energy Combust Sci 26:225–282

    Article  Google Scholar 

  • Saddoughi SG, Veeravalli SV (1994) Local isotropy in turbulent boundary layers at high reynolds number. J Fluid Mech 268:333–372

    Article  Google Scholar 

  • Samimy M, Lee SK (1991) Motion of particles with inertia in a compressible free shear layer. Phys Fluids A 3:1915–1923

    Article  Google Scholar 

  • Schelkin KI (1947) NACA. Tech. rep., No. 1110

  • Schröder A, Willert CE (eds) (2008) Particle image velocimetry: new developments and recent applications. Springer

  • Steinberg AM, Driscoll JF, Ceccio SL (2008a) Measurements of turbulent premixed flame dynamics using cinema-stereoscopic PIV. Exp Fluids 44:985–999

    Article  Google Scholar 

  • Steinberg AM, Driscoll JF, Ceccio SL (2008b) Turbulence–flame interactions—the mechanisms of flame strain and wrinkling. AIAA paper 2008-4572

  • Steinberg AM, Driscoll JF, Ceccio SL (2009) Temporal evolution of flame stretch due to turbulence and the hydrodynamic instability. Proc Combust Inst 32:1713–1721

    Article  Google Scholar 

  • Stella A, Guj G, Kompenhans J, Richard H, Raffel M (2001) Three-components particle image velocimetry measurements in premixed flames. Aerosp Sci Technol 5:357–364

    Article  Google Scholar 

  • Swaminathan N, Grout RW (2006) Interaction of turbulence and scalar fields in premixed flames. Phys Fluids 18:045102

    Article  MathSciNet  Google Scholar 

  • Tanahashi M, Murakami S, Choi G, Fukuchi Y, Miyauchi T (2005) Simultaneous CH-OH PLIF and stereoscopic PIV measurements of turbulent premixed flames. Proc Combust Inst 30:1665–1672

    Article  Google Scholar 

  • van Doorne CWH, Westerweel J (2007) Measurement of laminar, transitional and turbulent pipe flow using stereoscopic-piv. Exp Fluids 42:259–279

    Article  Google Scholar 

  • Zhu Y, Antonia RA (1995) Effect of wire separation on X-probe measurements in a turbulent flow. J Fluid Mech 287:199–233

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Campbell Carter of the Air Force Research Laboratory, Wright-Patterson AFB for the loan of the Photron Fastcam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Michael Steinberg.

Appendix

Appendix

A general transport equation for the strain rate components in a reacting flow can be derived by taking the spatial derivative the equations for conservation of momentum:

$$ {\frac{\partial} {\partial{x_j}}}\,{\frac{\partial{u_i}}{\partial{t}}} + {\frac{\partial}{\partial{x_j}}}\left(u_k{\frac{\partial{u_i}}{\partial{x_k}}}\right) =\frac{\partial{g}} {\partial{x_j}} -{\frac{\partial} {\partial{x_j}}}\left({\frac{1}{\rho}}\,{\frac{\partial{p}} {\partial{x_i}}}\right) +{\frac{\partial} {\partial{x_j}}}\left(\nu{\frac{\partial^2u_i}{\partial{x_k}\partial{x_k}}}\right)$$
(9)

where g is the gravitational body force, which is assumed constant. Setting \(A_{ij} =\partial{u_i}/\partial{x_j}\) , this can be expanded as:

$$ \begin{aligned} {\frac{\partial{A_{ij}}} {\partial{t}}} + u_k{\frac{\partial{A_{ij}}} {\partial{x_k}}} =& -A_{ik}A_{kj}-{\frac{1} {\rho}}\,{\frac{\partial^2{p}} {\partial{x_i}\partial{x_j}}} + {\frac{1} {\rho^2}}\,{\frac{\partial{p}} {\partial{x_i}}}{\frac{\partial{\rho}} {\partial{x_j}}} \\ & + \nu{\frac{\partial^2A_{ij}}{\partial{x_k}\partial{x_k}}} + {\frac{\partial\nu} {\partial{x_j}}}\,{\frac{\partial^2u_i} {\partial{x_k}\partial{x_k}}} \end{aligned} $$
(10)

Recognizing that S ij  = 1/2(A ij  + A ji ), the appropriate forms of Eq. 11 can be summed to yield:

$$ \begin{aligned} {\frac{\partial{S_{ij}}} {\partial{t}}} + u_k{\frac{\partial{S_{ij}}} {\partial{x_k}}} =& -\left({\frac{A_{ik}A_{kj}+A_{jk}A_{ki}} {2}}\right)-{\frac{1} {\rho}}\,{\frac{\partial^2{p}} {\partial{x_i}\partial{x_j}}} \\ &+ \nu{\frac{\partial^2S_{ij}} {\partial{x_k}\partial{x_k}}}+ {\frac{1} {2\rho^2}}\left({\frac{\partial{p}} {\partial{x_i}}}\,{\frac{\partial{\rho}} {\partial{x_j}}}+{\frac{\partial{p}} {\partial{x_j}}}\,{\frac{\partial{\rho}} {\partial{x_i}}}\right)\\ &+ {\frac{1} {2}}\left({\frac{\partial\nu} {\partial{x_j}}}\,{\frac{\partial^2u_i} {\partial{x_k}\partial{x_k}}}+{\frac{\partial\nu} {\partial{x_i}}}\,{\frac{\partial^2u_j} {\partial{x_k}\partial{x_k}}}\right) \end{aligned} $$
(11)

The first term on the right can be written in terms of \(\underline {S}\) and ω by recognizing that A ij  = S ij  − Ω ij and equating the terms of \(\underline {\Upomega}\) with the various vorticity components. This yields the final transport equation:

$$ \begin{aligned} {\frac{\partial{S_{ij}}} {\partial{t}}} + u_k{\frac{\partial{S_{ij}}} {\partial{x_k}}} =& -S_{ik}S_{kj}-{\frac{1} {4}}\left(\omega_i\omega_j-\delta_{ij}\omega_k\omega_k\right)\\ & -{\frac{1} {\rho}}\,{\frac{\partial^2{p}} {\partial{x_i}\partial{x_j}}}+ \nu{\frac{\partial^2S_{ij}} {\partial{x_k}\partial{x_k}}} + {\frac{1} {2\rho^2}}\left({\frac{\partial{p}} {\partial{x_i}}}\,{\frac{\partial{\rho}} {\partial{x_j}}}+{\frac{\partial{p}} {\partial{x_j}}}\,{\frac{\partial{\rho}} {\partial{x_i}}}\right)\\ &+ {\frac{1} {2}}\left({\frac{\partial\nu} {\partial{x_j}}}\,{\frac{\partial^2u_i} {\partial{x_k}\partial{x_k}}}+{\frac{\partial\nu} {\partial{x_i}}}\,{\frac{\partial^2u_j} {\partial{x_k}\partial{x_k}}}\right) \end{aligned} $$
(12)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinberg, A.M., Driscoll, J.F. & Ceccio, S.L. Three-dimensional temporally resolved measurements of turbulence–flame interactions using orthogonal-plane cinema-stereoscopic PIV. Exp Fluids 47, 527–547 (2009). https://doi.org/10.1007/s00348-009-0677-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-009-0677-7

Keywords

Navigation