Skip to main content
Log in

Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A new experimental method is described that provides high-speed movies of turbulent premixed flame wrinkling dynamics and the associated vorticity fields. This method employs cinema stereoscopic particle image velocimetry and has been applied to a turbulent slot Bunsen flame. Three-component velocity fields were measured with high temporal and spatial resolutions of 0.9 ms and 140 μm, respectively. The flame-front location was determined using a new multi-step method based on particle image gradients, which is described. Comparisons are made between flame fronts found with this method and simultaneous CH-PLIF images. These show that the flame contour determined corresponds well to the true location of maximum gas density gradient. Time histories of typical eddy–flame interactions are reported and several important phenomena identified. Outwardly rotating eddy pairs wrinkle the flame and are attenuated at they pass through the flamelet. Significant flame-generated vorticity is produced downstream of the wrinkled tip. Similar wrinkles are caused by larger groups of outwardly rotating eddies. Inwardly rotating pairs cause significant convex wrinkles that grow as the flame propagates. These wrinkles encounter other eddies that alter their behavior. The effects of the hydrodynamic and diffusive instabilities are observed and found to be significant contributors to the formation and propagation of wrinkles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bell JB, Day MS, Grcar JF, Lijewski MJ, Driscoll JF, Filatev SA (2007) Numerical simulation of a laboratory-scale turbulent slot flame. Proc Combust Inst 31:1299–1307

    Article  Google Scholar 

  • Cabot G, Vauchelles D, Taupin B, Boukhalfa A (2004) Experimental study of lean premixed turbulent combustion in a scale gas turbine chamber. Exp Therm Fluid Sci 28(7):683–690

    Article  Google Scholar 

  • Chakraborty N, Cant RS (2005) Effects of strain rate and curvature on surface density function transport in turbulent premixed flames in the thin reaction zones regime. Phys Fluids 17(6)

  • Charlette F, Meneveau C, Veynante D (2002) A power-law flame wrinkling model for LES of premixed turbulent combustion. Part 1: non-dynamic formulation and initial tests. Combust Flame 131(2):159–180

    Article  Google Scholar 

  • Chen JH, Im HG (2000) Stretch effects on the burning velocity of turbulent premixed hydrogen/air flames. Proc Combust Inst 28:211–218

    Google Scholar 

  • Cho Y, Kin JH, Cho T, Moon I, Yoon Y, Lee C (2004) Analysis of turbulent premixed flame structure using simultaneous PIV-OH PLIF. J Vis 7(1):43–54

    Article  Google Scholar 

  • Colin O, Ducros F, Veynante D, Poinsot T (2000) A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys Fluids 12(7):1843–1863

    Article  Google Scholar 

  • Damköhler G (1940) Der einfluβ der turbulenz auf die flammengeschwindigkeit. Z Elektrochem 46:601–652

    Google Scholar 

  • Denet B, Haldenwang P (1992) Numerical study of thermal-diffusive instability of premixed flames. Combust Sci Technol 86:199–221

    Article  Google Scholar 

  • Filatyev SA, Driscoll JF, Carter CD, Donbar JM (2005) Measured properties of turbulent premixed flames for model assessment, including burning velocities, stretch rates and surface densities. Combust Flame 141(1):1–21

    Article  Google Scholar 

  • Filatyev SA, Thariyan MP, Lucht RP, Gore JP (2007) Simultaneous stereo particle image velocimetry and double-pulsed planar laser-induced fluorescence of turbulent premixed flames. Combust Flame 150(3):201–209

    Article  Google Scholar 

  • Ganapathisubramani B, Lakshminarasimhan K, Clemens NT (2007) Determination of complete velocity gradient tensor by using cinematographic stereoscopic PIV in a turbulent jet. Exp Fluids 42(6):923–939

    Article  Google Scholar 

  • Hargrave GK, Jarvis S (2006) A study of premixed propagating flame vortex interaction. J Vis 9(2):179–187

    Google Scholar 

  • Hawkes ER, Cant RS (2000) A flame surface density approach to large eddy simulation of premixed turbulent combustion. Proc Combust Inst 28:51–58

    Google Scholar 

  • Hayashi S, Yamada H, Makida M (2005) Extending low-NOx operating range of a lean premixed-prevaporized gas turbine combustor by reaction of secondary mixtures injected into primary stage burned gas. Proc Combust Inst 30:2903–2911

    Article  Google Scholar 

  • Johnson MR, Littlejohn D, Nazeer WA, Smith KO, Cheng RK (2005) A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines. Proc Combust Inst 30:2867–2874

    Article  Google Scholar 

  • Kadowaki S (1999) The influence of hydrodynamic instability on the structure of cellular flames. Phys Fluids 11(11):3426–3433

    Article  MathSciNet  MATH  Google Scholar 

  • Kobayashi H, Kawazoe K (2000) Flame instability effects on the smallest wrinkling scale and burning velocity of high-pressure turbulent premixed flames. Proc Combust Inst 28:375–382

    Article  Google Scholar 

  • Lee TW, North FL, Santavicca DA (1993) Surface properties of turbulent premixed propane/air flames at various Lewis numbers. Combust Flame 93(4):445–456

    Article  Google Scholar 

  • Lee JG, Lee TW, Santavicca DA (1995) Lewis number effects on premixed flames interacting with turbulent Karman vortex streets. Combust Flame 100(1):161–168

    Article  Google Scholar 

  • Louch DS, Bray KNC (2001) Vorticity in unsteady premixed flames: vortex pair–premixed flame interactions under imposed body forces and various degrees of heat release and laminar flame thickness. Combust Flame 125(4):1279–1309

    Article  Google Scholar 

  • Meneveau C, Poinsot T (1991) Stretching and quenching of flamelets in premixed turbulent combustion. Combust Flame 86(4):311–332

    Article  Google Scholar 

  • Mueller CJ, Driscoll JF, Reuss DL, Drake MC, Rosalik ME (1998) Vorticity generation and attenuation as vorticies convect through a flame. Combust Flame 112(3):342–358

    Article  Google Scholar 

  • Nye DA, Lee JG, Lee TW, Santavicca DA (1996) Flame stretch measurements during the interaction of premixed flames and turbulent Karman vortex streets using PIV. Combust Flame 105(1):167–179

    Article  Google Scholar 

  • Pan KL, Qian J, Law CK, Shyy W (2002) The role of hydrodynamic instability in flame–vortex interaction. Proc Combust Inst 29:1695–1704

    Article  Google Scholar 

  • Peters N (2000) Turbulent combustion. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Pfadler S, Löffler M, Dinkelacker F, Leipertz A (2005) Measurement of the conditioned turbulence and temperature field of a premixed Bunsen burner by planar laser Rayleigh scattering and stereo particle image volocimetry. Exp Fluids 39(2):375–384

    Article  Google Scholar 

  • Raffel M, Willert C, Kompenhans J (1998) Particle image velocimetry: a practical guide. Springer, Berlin

    Google Scholar 

  • Renard PH, Rolon JC, Thevenin D, Candel S (1998) Wrinkling, poket formation and double premixed flame interaction processes. Proc Combust Inst 27:659–666

    Google Scholar 

  • Roberts WL, Driscoll JF (1991) A laminar vortex interacting with a premixed flame: measured formation of pockets of reactants. Combust Flame 87(3):245–256

    Article  Google Scholar 

  • Sinibaldi JO, Mueller CJ, Tulkki AE, Driscoll JF (1998) Suppression of flame wrinkling by buoyancy: the baroclinic stabilization mechanism. AIAA J 36(8):1432–1438

    Article  Google Scholar 

  • Sivashinsky GI (1977) Non-linear analysis of hydrodynamic instability in laminar flames. 1 - Derivation of basic equations. Acta Astronaut 4:1177–1206

    Article  MathSciNet  MATH  Google Scholar 

  • Stella A, Guj G, Kompenhans J, Richard H, Raffel M (2001) Three-components particle image velocimetry measurements in premixed flames. Aerosp Sci Technol 5:357–364

    Article  Google Scholar 

  • Sung CJ, Law CK, Axelbaum R (1994) Thermophoretic effects on seeding particles in LDV measurements of flames. Combust Sci Technol 99:199–132

    Article  Google Scholar 

  • Tanahashi M, Murakami S, Choi G, Fukuchi Y, Miyauchi T (2005) Simultaneous CH-OH PLIF and stereoscopic PIV measurements of turbulent premixed flames. Proc Combust Inst 30:1665–1672

    Article  Google Scholar 

  • Upatnieks A, Driscoll JF, Ceccio SL, Rasmussen CC (2004) Liftoff of turbulent jet flames—assessment of edge flame and other concepts using cinema-PIV. Combust Flame 138(3):259–272

    Article  Google Scholar 

  • Williams F (1985) Combustion theory, 2nd edn. Addison-Wesley, Reading

    Google Scholar 

  • Yuan J, Ji Y, Law CK (2006) Effects of turbulence and flame instability of flame front evolution. Phys Fluids 18(10)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Driscoll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinberg, A.M., Driscoll, J.F. & Ceccio, S.L. Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV. Exp Fluids 44, 985–999 (2008). https://doi.org/10.1007/s00348-007-0458-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-007-0458-0

Keywords

Navigation