Skip to main content
Log in

Früher antiexsudativer Effekt – OCT-Monitoring nach intravitrealer Bevacizumab-Applikation

Early antiexudative response – OCT monitoring after intravitreal bevacizumab injection

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

In der Induktion einer gesteigerten Gefäßpermeabilität ist VEGF 50.000-mal potenter als Histamin. In isolierten Gefäßen wird bereits in den ersten Minuten eine deutliche Erhöhung der hydraulischen Leitfähigkeit und des Diffusionskoeffizienten beobachtet. Es folgt eine anhaltende Phase, in der die Barrierefunktion der Gefäßwand selektiv aufgehoben ist. Die spezifische Inhibition des angiogenen, vasoaktiven und permeabilitätsfördernden Proteins VEGF ist mit neuen Wirkstoffen möglich geworden, von denen Bevacizumab als erstes für den klinischen („off label“) Einsatz frei verfügbar ist. Ödeme der Netzhaut entstehen nach Austritt von Wasser und niedermolekularen Stoffen in das Interstitium und stellen für unterschiedliche okuläre Pathologien eine wesentliche prognostische Determinate der Funktion dar. Die ersten Erfahrungen mit der antihyperpermeablen Wirkung von Bevacizumab deuten auf eine frühzeitige und potente Abdichtung pathologischer Leckage hin. Zukünftige Untersuchungen müssen allerdings erst noch zeigen, für welche Erkrankungen überhaupt ein dauerhafter Nutzen erreicht werden kann.

Abstract

VEGF is more potent than histamine by a factor of 50,000 for inducing increased vessel permeability. Already in the first few minutes, hydraulic conductivity and diffusive permeability are significantly increased, followed by a longer-lasting, marked leakage over 20 h. Specific inhibition of the angiogenic, vasoactive, and permeability-inducing protein VEGF is now possible by new drugs, one of which is the first available (off-label) treatment in Germany for routine clinical use (Avastin). Retinal edema is composed of increased outflow of water and low molecular substances in the interstitial environment and is an important determinate of functional development in different ocular diseases. First experiences with the anti-hyperpermeability effect show early response and high potential in pathologic leakage. Future examinations have to assess when a permanent benefit can be achieved in respect to the other antiproliferative capabilities of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Aiello LP, Bursell SE, Clermont A et al. (1997) Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes 46: 1473–1480

    PubMed  Google Scholar 

  2. Antonetti DA, Barber AJ, Hollinger LA et al. (1999) Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 274: 23463–23467

    Article  PubMed  Google Scholar 

  3. Avery RL, Pieramici DJ, Rabena MD et al. (2006) Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology 113: 363–372

    Article  PubMed  Google Scholar 

  4. Bates DO (1998) The chronic effect of vascular endothelial growth factor on individually perfused frog mesenteric microvessels. J Physiol 513 (Pt 1): 225–233

    Article  PubMed  Google Scholar 

  5. Bates DO, Curry FE (1996) Vascular endothelial growth factor increases hydraulic conductivity of isolated perfused microvessels. Am J Physiol 271(6 Pt 2): H2520–H2528

    PubMed  Google Scholar 

  6. Becker PM, Waltenberger J, Yachechko R et al. (2005) Neuropilin-1 regulates vascular endothelial growth factor-mediated endothelial permeability. Circ Res 96(12): 1257–1265

    Article  PubMed  Google Scholar 

  7. Behzadian MA, Windsor LJ, Ghaly N et al. (2003) VEGF-induced paracellular permeability in cultured endothelial cells involves urokinase and its receptor. FASEB J 17: 752–754

    PubMed  Google Scholar 

  8. Browning AC, Gray T, Amoaku WM (2005) Isolation, culture, and characterisation of human macular inner choroidal microvascular endothelial cells. Br J Ophthalmol 89: 1343–1347

    Article  PubMed  Google Scholar 

  9. Chan A, Duker JS, Ko TH et al. (2006) Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography. Arch Ophthalmol 124: 193–198

    Article  PubMed  Google Scholar 

  10. Chang YS, Munn LL, Hillsley MV et al. (2000) Effect of vascular endothelial growth factor on cultured endothelial cell monolayer transport properties. Microvasc Res 59: 265–277

    Article  PubMed  Google Scholar 

  11. Clark ER, Clark EL (1935) Observations on changes in blood vascular endothelium in the living animal. Am J Anat 57: 385–438

    Article  Google Scholar 

  12. Dejana E, Corada M, Lampugnani MG (1995) Endothelial cell-to-cell junctions. FASEB J 9: 910–918

    PubMed  Google Scholar 

  13. Detmar M, Brown LF, Claffey KP et al. (1994) Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis. J Exp Med 180: 1141–1146

    Article  PubMed  Google Scholar 

  14. Esser S, Wolburg K, Wolburg Het al. (1998) Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol 140(4): 947–959

    Article  PubMed  Google Scholar 

  15. Eter N, Bindewald A, Roth Fet al. (2004) OCT in age-related macular degeneration. Findings, usage in clinical routine, and assessment of treatment outcome. Ophthalmologe 101: 794–803

    PubMed  Google Scholar 

  16. Feng D, Nagy JA, Hipp J et al. (1996) Vesiculo-vacuolar organelles and the regulation of venule permeability to macromolecules by vascular permeability factor, histamine, and serotonin. J Exp Med 183: 1981–1986

    Article  PubMed  Google Scholar 

  17. Feng Y, Venema VJ, Venema RC et al. (1999) VEGF-induced permeability increase is mediated by caveolae. Invest Ophthalmol Vis Sci 40: 157–167

    PubMed  Google Scholar 

  18. Fu BM, Shen S (2003) Structural mechanisms of acute VEGF effect on microvessel permeability. Am J Physiol Heart Circ Physiol 284: H2124–H2135

    PubMed  Google Scholar 

  19. Gelisken F, Inhoffen W, Partsch M et al. (2001) Retinal pigment epithelial tear after photodynamic therapy for choroidal neovascularization. Am J Ophthalmol 131: 518–520

    Article  PubMed  Google Scholar 

  20. Hee MR, Puliafito CA, Wong C et al. (1995) Quantitative assessment of macular edema with optical coherence tomography. Arch Ophthalmol 113: 1019–1029

    PubMed  Google Scholar 

  21. Heier J, Focus Study Group (2005) Intravitreal ranibizumab (Lucentis) with verteprofin photodynamic therapyy for neovascular age-related macular degeneration: year one results. ASRS scientific paper presentation, Montreal, Quebec, Canada

  22. Hillman NJ, Whittles CE, Pocock TM, Williams B et al. (2001) Differential effects of vascular endothelial growth factor-C and placental growth factor-1 on the hydraulic conductivity of frog mesenteric capillaries. J Vasc Res 38: 176–186

    Article  PubMed  Google Scholar 

  23. Kaiser P, ANCHOR Study Group (2006) ANCHOR DATA (year one results). Macula 2006, paper presentation, New York, NY, USA

  24. Legro MW (1991) Quality of life and cataracts: a review of patient-centered studies of cataract surgery outcomes. Ophthalmic Surg 22: 431–443

    PubMed  Google Scholar 

  25. Majno G, Shea SM, Leventhal M (1969) Endothelial contraction induced by histamine-type mediators: an electron microscopic study. J Cell Biol 42: 647–672

    Article  PubMed  Google Scholar 

  26. Marmor MF (1999) Mechanisms of fluid accumulation in retinal edema. Doc Ophthalmol 97: 239–249

    Article  PubMed  Google Scholar 

  27. Massin P, Vicaut E, Haouchine B et al. (2001) Reproducibility of retinal mapping using optical coherence tomography. Arch Ophthalmol 119: 1135–1142

    PubMed  Google Scholar 

  28. Meredith TA, Kenyon KR, Singerman LJ et al. (1976) Perifoveal vascular leakage and macular oedema after intracapsular cataract extraction. Br J Ophthalmol 60: 765–769

    PubMed  Google Scholar 

  29. Neal CR, Michel CC (1997) Transcellular openings through frog microvascular endothelium. Exp Physiol 82: 419–422

    PubMed  Google Scholar 

  30. Nussenblatt RB, Kaufman SC, Palestine AG et al. (1987) Macular thickening and visual acuity. Measurement in patients with cystoid macular edema. Ophthalmology 94: 1134–1139

    PubMed  Google Scholar 

  31. Paunescu LA, Schuman JS, Price LL et al. (2004) Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. Invest Ophthalmol Vis Sci 45: 1716–1724

    Article  PubMed  Google Scholar 

  32. Pepper MS (2001) Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21: 1104–1117

    PubMed  Google Scholar 

  33. Peters S, Julien S, Ziemssen F et al. (2006) Bevacizumab Significantly Reduces VEGF-Related Permeability in Choroidal Endothelial Cells. Invest Ophthalmol Vis Sci 47: A5343

    Google Scholar 

  34. Polito A, Del Borrello M, Polini G et al. (2006) Diurnal variation in clinically significant diabetic macular edema measured by the Stratus OCT. Retina 26: 14–20

    Article  PubMed  Google Scholar 

  35. Puliafito CA, Hee MR, Lin CP et al. (1995) Imaging of macular diseases with optical coherence tomography. Ophthalmology 102: 217–229

    PubMed  Google Scholar 

  36. Reinthal EK, Volker M, Freudenthaler N et al. (2004) Optical coherence tomography in the diagnosis and follow-up of patients with uveitic macular edema. Ophthalmologe 101: 1181–1188

    Article  PubMed  Google Scholar 

  37. Roberts WG, Palade GE (1995) Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 108 (Pt 6): 2369–2379

    PubMed  Google Scholar 

  38. Schmidt-Erfurth U, Niemeyer M, Geitzenauer W et al. (2005) Time course and morphology of vascular effects associated with photodynamic therapy. Ophthalmology 112: 2061–2069

    Article  PubMed  Google Scholar 

  39. Schoefl GI (1963) Studies on Inflammation. III. Growing capillaries: Their structure and permeability. Virchows Arch Pathol Anat Physiol Klin Med 337: 97–141

    Article  PubMed  Google Scholar 

  40. Senger DR, Connolly DT, Van de WL et al. (1990) Purification and NH2-terminal amino acid sequence of guinea pig tumor-secreted vascular permeability factor. Cancer Res 50: 1774–1778

    PubMed  Google Scholar 

  41. Shahidi M, Ogura Y, Blair NP et al. (1991) Retinal thickness analysis for quantitative assessment of diabetic macular edema. Arch Ophthalmol 109: 1115–1119

    PubMed  Google Scholar 

  42. Stark WJ Jr, Maumenee AE, Fagadau W et al. (1984) Cystoid macular edema in pseudophakia. Surv Ophthalmol 28 [Suppl]: 442–451

    Article  PubMed  Google Scholar 

  43. Suarez S, Ballmer-Hofer K (2001) VEGF transiently disrupts gap junctional communication in endothelial cells. J Cell Sci 114 (Pt 6): 1229–1235

    PubMed  Google Scholar 

  44. Sundelin K, Lundstrom M, Stenevi U (2005) Self-assessed visual function for patients with posterior capsule opacification before and after capsulotomy. Acta Ophthalmol Scand 83: 729–733

    Article  PubMed  Google Scholar 

  45. Wang Y, Fei D, Vanderlaan M et al. (2004) Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis 7: 335–345

    Article  PubMed  Google Scholar 

  46. Weis SM, Cheresh DA (2005) Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437: 497–504

    Article  PubMed  Google Scholar 

  47. Whittles CE, Pocock TM, Wedge SR et al. (2002) ZM323881, a novel inhibitor of vascular endothelial growth factor-receptor-2 tyrosine kinase activity. Microcirculation 9: 513–522

    Article  PubMed  Google Scholar 

  48. Wu HM, Yuan Y, Zawieja DC et al. (1999) Role of phospholipase C, protein kinase C, and calcium in VEGF-induced venular hyperpermeability. Am J Physiol 276 (2 Pt 2): H535–H542

    PubMed  Google Scholar 

  49. Zhang Y, Matsuo H, Morita E (2005) Vascular endothelial growth factor 121 is the predominant isoform in psoriatic scales. Exp Dermatol 14: 758–764

    PubMed  Google Scholar 

Download references

Danksagung

Wir danken allen fleißigen Mitarbeitern, insbesondere Dr. Sabine Biester, Dr. Martin Leitritz und Dr. Efdal Yörük für die Hilfe bei der Befunderhebung.

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ziemssen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Völcker, M., Peters, S., Inhoffen, W. et al. Früher antiexsudativer Effekt – OCT-Monitoring nach intravitrealer Bevacizumab-Applikation. Ophthalmologe 103, 476–483 (2006). https://doi.org/10.1007/s00347-006-1356-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-006-1356-1

Schlüsselwörter

Keywords

Navigation