Skip to main content
Log in

Application of artificial intelligence in surgery

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Artificial intelligence (AI) is gradually changing the practice of surgery with technological advancements in imaging, navigation, and robotic intervention. In this article, we review the recent successful and influential applications of AI in surgery from preoperative planning and intraoperative guidance to its integration into surgical robots. We conclude this review by summarizing the current state, emerging trends, and major challenges in the future development of AI in surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vitiello V, Lee SL, Cundy TP, Yang GZ. Emerging robotic platforms for minimally invasive surgery. IEEE Rev Biomed Eng 2013; 6:111–126

    PubMed  Google Scholar 

  2. Troccaz J, Dagnino G, Yang GZ. Frontiers of medical robotics: from concept to systems to clinical translation. Annu Rev Biomed Eng 2019; 21(1): 193–218

    CAS  PubMed  Google Scholar 

  3. Yang GZ. Body Sensor Networks. New York: Springer, 2014

    Google Scholar 

  4. Yang GZ. Implantable Sensors and Systems: from Theory to Practice. New York: Springer, 2018

    Google Scholar 

  5. Shortliffe E. Computer-Based Medical Consultations: MYCIN. Amsterdam: Elsevier, 2012. Vol. 2

    Google Scholar 

  6. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS). Lake Tahoe. 2012: 1097–1105

  7. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal 2017; 42: 60–88

    PubMed  Google Scholar 

  8. Khosravi P, Kazemi E, Imielinski M, Elemento O, Hajirasouliha I. Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images. EBioMedicine 2018; 27: 317–328

    PubMed  Google Scholar 

  9. Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, Mahajan V, Rao P, Warier P. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 2018; 392(10162): 2388–2396

    PubMed  Google Scholar 

  10. Meyer A, Zverinski D, Pfahringer B, Kempfert J, Kuehne T, Sündermann SH, Stamm C, Hofmann T, Falk V, Eickhoff C. Machine learning for real-time prediction of complications in critical care: a retrospective study. Lancet Respir Med 2018; 6(12): 905–914

    PubMed  Google Scholar 

  11. Li X, Zhang S, Zhang Q, Wei X, Pan Y, Zhao J, Xin X, Qin C, Wang X, Li J, Yang F, Zhao Y, Yang M, Wang Q, Zheng Z, Zheng X, Yang X, Whitlow CT, Gurcan MN, Zhang L, Wang X, Pasche BC, Gao M, Zhang W, Chen K. Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study. Lancet Oncol 2019; 20(2): 193–201

    PubMed  Google Scholar 

  12. Rubinstein E, Salhov M, Nidam-Leshem M, White V, Golan S, Baniel J, Bernstine H, Groshar D, Averbuch A. Unsupervised tumor detection in dynamic PET/CT imaging of the prostate. Med Image Anal 2019; 55: 27–40

    PubMed  Google Scholar 

  13. Winkels M, Cohen TS. Pulmonary nodule detection in CT scans with equivariant CNNs. Med Image Anal 2019; 55: 15–26

    PubMed  Google Scholar 

  14. Maicas G, Carneiro G, Bradley AP, Nascimento JC, Reid I. Deep reinforcement learning for active breast lesion detection from DCE-MRI. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2017: 665–673

    Google Scholar 

  15. Lee H, Yune S, Mansouri M, Kim M, Tajmir SH, Guerrier CE, Ebert SA, Pomerantz SR, Romero JM, Kamalian S, Gonzalez RG, Lev MH, Do S. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat Biomed Eng 2019; 3(3): 173–182

    PubMed  Google Scholar 

  16. Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 2017; 36: 61–78

    PubMed  Google Scholar 

  17. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston. 2015: 3431–3440

  18. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Proceedings of International Conference on Medical Image Computing and ComputerAssisted Intervention (MICCAI). New York: Springer, 2015: 234–241

    Google Scholar 

  19. Cicek O, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2016: 424–432

    Google Scholar 

  20. Zhou XY, Yang GZ. Normalization in training U-Net for 2D biomedical semantic segmentation. IEEE Robot Autom Lett 2019; 4(2): 1792–1799

    Google Scholar 

  21. Gibson E, Giganti F, Hu Y, Bonmati E, Bandula S, Gurusamy K, Davidson B, Pereira SP, Clarkson MJ, Barratt DC. Automatic multi-organ segmentation on abdominal CT with dense V-networks. IEEE Trans Med Imaging 2018; 37(8): 1822–1834

    PubMed  PubMed Central  Google Scholar 

  22. Wang G, Li W, Zuluaga MA, Pratt R, Patel PA, Aertsen M, Doel T, David AL, Deprest J, Ourselin S, Vercauteren T. Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans Med Imaging 2018; 37(7): 1562–1573

    PubMed  Google Scholar 

  23. Laina I, Rieke N, Rupprecht C, Vizca’ino JP, Eslami A, Tombari F, Navab N. Concurrent segmentation and localization for tracking of surgical instruments. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2017: 664–672

    Google Scholar 

  24. Feng X, Yang J, Laine AF, Angelini ED. Discriminative localization in CNNs for weakly-supervised segmentation of pulmonary nodules. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2017: 568–576

    Google Scholar 

  25. Bai W, Chen C, Tarroni G, Duan J, Guitton F, Petersen SE, Guo Y, Matthews PM, Rueckert D. Self-supervised learning for cardiac MR image segmentation by anatomical position prediction. In: International Conference on Medical Image Computing and Computer Assisted Intervention. New York: Springer, 2019: 541–549

    Google Scholar 

  26. Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca AV. VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans Med Imaging 2019: 38(8): 1788–1800

    Google Scholar 

  27. Shen Z, Han X, Xu Z, Niethammer M. Networks for joint affine and non-parametric image registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach. 2019: 4224–4233

  28. Hu Y, Modat M, Gibson E, Li W, Ghavami N, Bonmati E, Wang G, Bandula S, Moore CM, Emberton M, Ourselin S, Noble JA, Barratt DC, Vercauteren T. Weakly-supervised convolutional neural networks for multimodal image registration. Med Image Anal 2018; 49: 1–13

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Miao S, Piat S, Fischer P, Tuysuzoglu A, Mewes P, Mansi T, Liao R. Dilated FCN for multi-agent 2D/3D medical image registration. In: Proceedings of AAAI Conference on Artificial Intelligence. New Orleans. 2018

  30. Sokooti H, de Vos B, Berendsen F, Lelieveldt BP, Išgum I, Staring M. Nonrigid image registration using multi-scale 3D convolutional neural networks. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2017: 232–239

    Google Scholar 

  31. Liao R, Miao S, de Tournemire P, Grbic S, Kamen A, Mansi T, Comaniciu D. An artificial agent for robust image registration. In: Proceedings of AAAI Conference on Artificial Intelligence. San Francisco. 2017

  32. Cool D, Downey D, Izawa J, Chin J, Fenster A. 3D prostate model formation from non-parallel 2D ultrasound biopsy images. Med Image Anal 2006; 10(6): 875–887

    PubMed  Google Scholar 

  33. Zhou X, Yang G, Riga C, Lee S. Stent graft shape instantiation for fenestrated endovascular aortic repair. In: The Hamlyn Symposium on Medical Robotics. London. 2017

  34. Zhou XY, Lin J, Riga C, Yang GZ, Lee SL. Real-time 3D shape instantiation from single fluoroscopy projection for fenestrated stent graft deployment. IEEE Robot Autom Lett 2018; 3(2): 1314–1321

    Google Scholar 

  35. Zheng JQ, Zhou XY, Riga C, Yang GZ. Real-time 3D shape instantiation for partially deployed stent segments from a single 2D fluoroscopic image in fenestrated endovascular aortic repair. IEEE Robot Autom Lett 2019; 4(4): 3703–3710

    Google Scholar 

  36. Zhou XY, Riga C, Lee SL, Yang GZ. Towards automatic 3D shape instantiation for deployed stent grafts: 2D multiple-class and class-imbalance marker segmentation with equally-weighted focal U-Net. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid: IEEE, 2018: 1261–1267

    Google Scholar 

  37. Zheng JQ, Zhou XY, Riga C, Yang GZ. Towards 3D path planning from a single 2D fluoroscopic image for robot assisted fenestrated endovascular aortic repair. In: 2019 International Conference on Robotics and Automation (ICRA). Montreal: IEEE, 2019: 8747–8753

    Google Scholar 

  38. Lee SL, Chung A, Lerotic M, Hawkins MA, Tait D, Yang GZ. Dynamic shape instantiation for intra-operative guidance. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2010: 69–76

    Google Scholar 

  39. Zhou XY, Yang GZ, Lee SL. A real-time and registration-free framework for dynamic shape instantiation. Med Image Anal 2018; 44: 86–97

    PubMed  Google Scholar 

  40. Zhou XY, Wang ZY, Li P, Zheng JQ, Yang GZ. One stage shape instantiation from a single 2D image to 3D point cloud. In: International Conference on Medical Image Computing and Computer Assisted Intervention. New York: Springer, 2019: 30–38

    Google Scholar 

  41. Mahmood F, Durr NJ. Deep learning and conditional random fields-based depth estimation and topographical reconstruction from conventional endoscopy. Med Image Anal 2018; 48: 230–243

    PubMed  Google Scholar 

  42. Mahmood F, Chen R, Durr NJ. Unsupervised reverse domain adaptation for synthetic medical images via adversarial training. IEEE Trans Med Imaging 2018; 37(12): 2572–2581

    PubMed  Google Scholar 

  43. Turan M, Ornek EP, Ibrahimli N, Giracoglu C, Almalioglu Y, Yanik MF, Sitti M. Unsupervised odometry and depth learning for endoscopic capsule robots. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid: IEEE, 2018: 1801–1807

    Google Scholar 

  44. Shen M, Gu Y, Liu N, Yang GZ. Context-aware depth and pose estimation for bronchoscopic navigation. IEEE Robot Autom Lett 2019; 4(2): 732–739

    Google Scholar 

  45. Zhou T, Brown M, Snavely N, Lowe DG. Unsupervised learning of depth and ego-motion from video. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Hawaii. 2017

  46. Zhan H, Garg R, Saroj Weerasekera C, Li K, Agarwal H, Reid I. Unsupervised learning of monocular depth estimation and visual odometry with deep feature reconstruction. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City. 2018

  47. Ye M, Johns E, Handa A, Zhang L, Pratt P, Yang GZ. Selfsupervised siamese learning on stereo image pairs for depth estimation in robotic surgery. In: The Hamlyn Symposium on Medical Robotics. London. 2017: 27

  48. Zhu JY, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice. 2017: 2223–2232

  49. Turan M, Almalioglu Y, Araujo H, Konukoglu E, Sitti M. Deep endovo: a recurrent convolutional neural network (RCNN) based visual odometry approach for endoscopic capsule robots. Neurocomputing 2018; 275: 1861–1870

    Google Scholar 

  50. Sganga J, Eng D, Graetzel C, Camarillo D. Offsetnet: deep learning for localization in the lung using rendered images. In: 2019 International Conference on Robotics and Automation (ICRA). Montreal: IEEE, 2019: 5046–5052

    Google Scholar 

  51. Mountney P, Stoyanov D, Davison A, Yang GZ. Simultaneous stereoscope localization and soft-tissue mapping for minimal invasive surgery. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2006: 347–354

    Google Scholar 

  52. Davison AJ, Reid ID, Molton ND, Stasse O. MonoSLAM: real-time single camera SLAM. IEEE Trans Pattern Anal Mach Intell 2007; 29(6): 1052–1067

    PubMed  Google Scholar 

  53. Mountney P, Yang GZ. Motion compensated SLAM for image guided surgery. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2010: 496–504

    Google Scholar 

  54. Grasa OG, Bernal E, Casado S, Gil I, Montiel JM. Visual SLAM for handheld monocular endoscope. IEEE Trans Med Imaging 2014; 33(1): 135–146

    PubMed  Google Scholar 

  55. Turan M, Almalioglu Y, Araujo H, Konukoglu E, Sitti M. A nonrigid map fusion-based direct SLAM method for endoscopic capsule robots. Int J Intell Robot Appl 2017; 1(4): 399–409

    PubMed  PubMed Central  Google Scholar 

  56. Song J, Wang J, Zhao L, Huang S, Dissanayake G. MISSLAM: real-time large-scale dense deformable SLAM system in minimal invasive surgery based on heterogeneous computing. IEEE Robot Autom Lett 2018; 3(4): 4068–4075

    Google Scholar 

  57. Zhou XY, Ernst S, Lee SL. Path planning for robot-enhanced cardiac radiofrequency catheter ablation. In: 2016 IEEE international conference on robotics and automation (ICRA). Stockholm: IEEE, 2016: 4172–4177

    Google Scholar 

  58. Shi C, Giannarou S, Lee SL, Yang GZ. Simultaneous catheter and environment modeling for trans-catheter aortic valve implantation. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Chicago: IEEE, 2014: 2024–2029

    Google Scholar 

  59. Zhao L, Giannarou S, Lee SL, Yang GZ. SCEM +: real-time robust simultaneous catheter and environment modeling for endovascular navigation. IEEE Robot Autom Lett 2016; 1(2): 961–968

    Google Scholar 

  60. Zhao L, Giannarou S, Lee SL, Yang GZ. Registration-free simultaneous catheter and environment modelling. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2016: 525–533

    Google Scholar 

  61. Mountney P, Yang GZ. Soft tissue tracking for minimally invasive surgery: learning local deformation online. In: Proceedings of International Conference on Medical Image Computing and ComputerAssisted Intervention (MICCAI). New York: Springer, 2008: 364–372

    Google Scholar 

  62. Ye M, Giannarou S, Meining A, Yang GZ. Online tracking and retargeting with applications to optical biopsy in gastrointestinal endoscopic examinations. Med Image Anal 2016; 30: 144–157

    PubMed  Google Scholar 

  63. Wang R, Zhang M, Meng X, Geng Z, Wang FY. 3D tracking for augmented reality using combined region and dense cues in endoscopic surgery. IEEE J Biomed Health Inform 2018; 22(5): 1540–1551

    PubMed  Google Scholar 

  64. Bernhardt S, Nicolau SA, Soler L, Doignon C. The status of augmented reality in laparoscopic surgery as of 2016. Med Image Anal 2017; 37: 66–90

    PubMed  Google Scholar 

  65. Wang J, Suenaga H, Hoshi K, Yang L, Kobayashi E, Sakuma I, Liao H. Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery. IEEE Trans Biomed Eng 2014; 61(4): 1295–1304

    PubMed  Google Scholar 

  66. Pratt P, Ives M, Lawton G, Simmons J, Radev N, Spyropoulou L, Amiras D. Through the HoloLens™ looking glass: augmented reality for extremity reconstruction surgery using 3D vascular models with perforating vessels. Eur Radiol Exp 2018; 2(1): 2

    PubMed  PubMed Central  Google Scholar 

  67. Zhang X, Wang J, Wang T, Ji X, Shen Y, Sun Z, Zhang X. A markerless automatic deformable registration framework for augmented reality navigation of laparoscopy partial nephrectomy. Int J CARS 2019; 14(8): 1285–1294

    Google Scholar 

  68. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019; 25(1): 44–56

    CAS  PubMed  Google Scholar 

  69. Mirnezami R, Ahmed A. Surgery 3.0, artificial intelligence and the next-generation surgeon. Br J Surg 2018; 105(5): 463–465

    CAS  PubMed  Google Scholar 

  70. Bouget D, Benenson R, Omran M, Riffaud L, Schiele B, Jannin P. Detecting surgical tools by modelling local appearance and global shape. IEEE Trans Med Imaging 2015; 34(12): 2603–2617

    PubMed  Google Scholar 

  71. Shvets AA, Rakhlin A, Kalinin AA, Iglovikov VI. Automatic instrument segmentation in robot-assisted surgery using deep learning. In: Proceedings of IEEE International Conference on Machine Learning and Applications (ICMLA). Stockholm: IEEE, 2018: 624–628

    Google Scholar 

  72. Islam M, Atputharuban DA, Ramesh R, Ren H. Real-time instrument segmentation in robotic surgery using auxiliary supervised deep adversarial learning. IEEE Robot Autom Lett 2019; 4(2): 2188–2195

    Google Scholar 

  73. Sznitman R, Richa R, Taylor RH, Jedynak B, Hager GD. Unified detection and tracking of instruments during retinal microsurgery. IEEE Trans Pattern Anal Mach Intell 2013; 35(5): 1263–1273

    PubMed  Google Scholar 

  74. Zhang L, Ye M, Chan PL, Yang GZ. Real-time surgical tool tracking and pose estimation using a hybrid cylindrical marker. Int J CARS 2017; 12(6): 921–930

    Google Scholar 

  75. Ye M, Zhang L, Giannarou S, Yang GZ. Real-time 3D tracking of articulated tools for robotic surgery. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2016: 386–394

    Google Scholar 

  76. Zhao Z, Voros S, Weng Y, Chang F, Li R. Tracking-by-detection of surgical instruments in minimally invasive surgery via the convolutional neural network deep learning-based method. Comput Assist Surg (Abingdon) 2017; 22(sup1): 26–35

    Google Scholar 

  77. Nwoye CI, Mutter D, Marescaux J, Padoy N. Weakly supervised convolutional LSTM approach for tool tracking in laparoscopic videos. Int J CARS 2019; 14(6): 1059–1067

    Google Scholar 

  78. Sarikaya D, Corso JJ, Guru KA. Detection and localization of robotic tools in robot-assisted surgery videos using deep neural networks for region proposal and detection. IEEE Trans Med Imaging 2017; 36(7): 1542–1549

    PubMed  Google Scholar 

  79. Kurmann T, Neila PM, Du X, Fua P, Stoyanov D, Wolf S, Sznitman R. Simultaneous recognition and pose estimation of instruments in minimally invasive surgery. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2017: 505–513

    Google Scholar 

  80. Padoy N, Hager GD. 3D thread tracking for robotic assistance in tele-surgery. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). San Francisco: IEEE, 2011: 2102–2107

    Google Scholar 

  81. Hu Y, Gu Y, Yang J, Yang GZ. Multi-stage suture detection for robot assisted anastomosis based on deep learning. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Brisbane: IEEE, 2018: 1–8

    Google Scholar 

  82. Gu Y, Hu Y, Zhang L, Yang J, Yang GZ. Cross-scene suture thread parsing for robot assisted anastomosis based on joint feature learning. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid: IEEE, 2018: 769–776

    Google Scholar 

  83. Aviles AI, Alsaleh SM, Hahn JK, Casals A. Towards retrieving force feedback in robotic-assisted surgery: a supervised neurorecurrent-vision approach. IEEE Trans Haptics 2017; 10(3): 431–443

    PubMed  Google Scholar 

  84. Marban A, Srinivasan V, Samek W, Ferna’ndez J, Casals A. Estimation of interaction forces in robotic surgery using a semisupervised deep neural network model. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid: IEEE, 2018: 761–768

    Google Scholar 

  85. Ahmidi N, Tao L, Sefati S, Gao Y, Lea C, Haro BB, Zappella L, Khudanpur S, Vidal R, Hager GD. A dataset and benchmarks for segmentation and recognition of gestures in robotic surgery. IEEE Trans Biomed Eng 2017; 64(9): 2025–2041

    PubMed  PubMed Central  Google Scholar 

  86. Fard MJ, Ameri S, Chinnam RB, Ellis RD. Soft boundary approach for unsupervised gesture segmentation in robotic-assisted surgery. IEEE Robot Autom Lett 2017; 2(1): 171–178

    Google Scholar 

  87. Krishnan S, Garg A, Patil S, Lea C, Hager G, Abbeel P, Goldberg K. Transition state clustering: unsupervised surgical trajectory segmentation for robot learning. Int J Robot Res 2017; 36(13–14): 1595–1618

    Google Scholar 

  88. Murali A, Garg A, Krishnan S, Pokorny FT, Abbeel P, Darrell T, Goldberg K. TSC-DL: unsupervised trajectory segmentation of multi-modal surgical demonstrations with deep learning. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Stockholm: IEEE, 2016: 4150–4157

    Google Scholar 

  89. Zappella L, Bíjar B, Hager G, Vidal R. Surgical gesture classification from video and kinematic data. Med Image Anal 2013; 17(7): 732–745

    PubMed  Google Scholar 

  90. Tao L, Zappella L, Hager GD, Vidal R. Surgical gesture segmentation and recognition. In: Proceedings o International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2013: 339–346

    Google Scholar 

  91. Despinoy F, Bouget D, Forestier G, Penet C, Zemiti N, Poignet P, Jannin P. Unsupervised trajectory segmentation for surgical gesture recognition in robotic training. IEEE Trans Biomed Eng 2016; 63(6): 1280–1291

    PubMed  Google Scholar 

  92. DiPietro R, Ahmidi N, Malpani A, Waldram M, Lee GI, Lee MR, Vedula SS, Hager GD. Segmenting and classifying activities in robot-assisted surgery with recurrent neural networks. Int J CARS 2019; 14(11): 2005–2020

    Google Scholar 

  93. Liu D, Jiang T. Deep reinforcement learning for surgical gesture segmentation and classification. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2018: 247–255

    Google Scholar 

  94. Padoy N, Hager GD. Human-machine collaborative surgery using learned models. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Shanghai: IEEE, 2011: 5285–5292

    Google Scholar 

  95. Calinon S, Bruno D, Malekzadeh MS, Nanayakkara T, Caldwell DG. Human-robot skills transfer interfaces for a flexible surgical robot. Comput Methods Programs Biomed 2014; 116(2): 81–96

    PubMed  Google Scholar 

  96. Osa T, Sugita N, Mitsuishi M. Online trajectory planning in dynamic environments for surgical task automation. In: Robotics: Science and Systems. Berkeley. 2014: 1–9

  97. Van Den Berg J, Miller S, Duckworth D, Hu H, Wan A, Fu XY, Goldberg K, Abbeel P. Superhuman performance of surgical tasks by robots using iterative learning from human-guided demonstrations. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Alaska: IEEE, 2010: 2074–2081

    Google Scholar 

  98. Murali A, Sen S, Kehoe B, Garg A, McFarland S, Patil S, Boyd WD, Lim S, Abbeel P, Goldberg K. Learning by observation for surgical subtasks: multilateral cutting of 3D viscoelastic and 2D orthotropic tissue phantoms. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Seattle: IEEE, 2015:1202–1209

    Google Scholar 

  99. Mayer H, Gomez F, Wierstra D, Nagy I, Knoll A, Schmidhuber J. A system for robotic heart surgery that learns to tie knots using recurrent neural networks. Adv Robot 2008; 22(13–14): 1521–1537

    Google Scholar 

  100. De Momi E, Kranendonk L, Valenti M, Enayati N, Ferrigno G. A neural network-based approach for trajectory planning in robot-human handover tasks. Front Robot AI 2016; 3: 34

    Google Scholar 

  101. Kober J, Bagnell JA, Peters J. Reinforcement learning in robotics: a survey. Int J Robot Res 2013; 32(11): 1238–1274

    Google Scholar 

  102. Abbeel P, Ng AY. Apprenticeship learning via inverse reinforcement learning. In: Proceedings of International Conference on Machine Learning (ICML). Beijing: ACM, 2004: 1

    Google Scholar 

  103. Tan X, Chng CB, Su Y, Lim KB, Chui CK. Robotassisted training in laparoscopy using deep reinforcement learning. IEEE Robot Autom Lett 2019; 4(2): 485–492

    Google Scholar 

  104. Ho J, Ermon S. Generative adversarial imitation learning. In: Proceedings of Advances in Neural Information Processing Systems (NIPS). Barcelona. 2016: 4565–4573

  105. Levine S, Finn C, Darrell T, Abbeel P. End-to-end training of deep visuomotor policies. J Mach Learn Res 2016; 17(1): 1334–1373

    Google Scholar 

  106. Thananjeyan B, Garg A, Krishnan S, Chen C, Miller L, Goldberg K. Multilateral surgical pattern cutting in 2D orthotropic gauze with deep reinforcement learning policies for tensioning. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Singapore: IEEE, 2017: 2371–2378

    Google Scholar 

  107. Yang GZ, Dempere-Marco L, Hu XP, Rowe A. Visual search: psychophysical models and practical applications. Image Vis Comput 2002; 20(4): 291–305

    Google Scholar 

  108. Yang GZ, Mylonas GP, Kwok KW, Chung A. Perceptual docking for robotic control. In: International Workshop on Medical Imaging and Virtual Reality. New York: Springer, 2008: 21–30

    Google Scholar 

  109. Visentini-Scarzanella M, Mylonas GP, Stoyanov D, Yang GZ. I-brush: a gaze-contingent virtual paintbrush for dense 3D reconstruction in robotic assisted surgery. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2009: 353–360

    Google Scholar 

  110. Fujii K, Gras G, Salerno A, Yang GZ. Gaze gesture based human robot interaction for laparoscopic surgery. Med Image Anal 2018; 44: 196–214

    PubMed  Google Scholar 

  111. Nishikawa A, Hosoi T, Koara K, Negoro D, Hikita A, Asano S, Kakutani H, Miyazaki F, Sekimoto M, Yasui M, Miyake Y, Takiguchi S, Monden M. Face mouse: a novel human-machine interface for controlling the position of a laparoscope. IEEE Trans Robot Autom 2003; 19(5): 825–841

    Google Scholar 

  112. Hong N, Kim M, Lee C, Kim S. Head-mounted interface for intuitive vision control and continuous surgical operation in a surgical robot system. Med Biol Eng Comput 2019; 57(3): 601–614

    PubMed  Google Scholar 

  113. Graves A. Mohamed Ar, Hinton G. Speech recognition with deep recurrent neural networks. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver: IEEE, 2013: 6645–6649

    Google Scholar 

  114. Zinchenko K, Wu CY, Song KT. A study on speech recognition control for a surgical robot. IEEE Trans Industr Inform 2017; 13 (2): 607–615

    Google Scholar 

  115. Jacob MG, Li YT, Akingba GA, Wachs JP. Collaboration with a robotic scrub nurse. Commun ACM 2013; 56(5): 68–75

    Google Scholar 

  116. Wen R, Tay WL, Nguyen BP, Chng CB, Chui CK. Hand gesture guided robot-assisted surgery based on a direct augmented reality interface. ComputMethods Programs Biomed 2014; 116(2): 68–80

    Google Scholar 

  117. Oyedotun OK, Khashman A. Deep learning in vision-based static hand gesture recognition. Neural Comput Appl 2017; 28(12): 3941–3951

    Google Scholar 

  118. Hu Y, Zhang L, Li W, Yang GZ. Robotic sewing and knot tying for personalized stent graft manufacturing. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid: IEEE, 2018: 754–760

    Google Scholar 

  119. Hu Y, Li W, Zhang L, Yang GZ. Designing, prototyping, and testing a flexible suturing robot for transanal endoscopic microsurgery. IEEE Robot Autom Lett 2019; 4(2): 1669–1675

    Google Scholar 

  120. Yang GZ, Bellingham J, Dupont PE, Fischer P, Floridi L, Full R, Jacobstein N, Kumar V, McNutt M, Merrifield R, Nelson BJ, Scassellati B, Taddeo M, Taylor R, Veloso M, Wang ZL, Wood R. The grand challenges of science robotics. Sc Robot 2018; 3(14): eaar7650

    Google Scholar 

  121. Yang GZ, Cambias J, Cleary K, Daimler E, Drake J, Dupont PE, Hata N, Kazanzides P, Martel S, Patel RV, Santos VJ, Taylor RH. Medical roboticsregulatory, ethical, and legal considerations for increasing levels of autonomy. Sci Robot 2017; 2(4): 8638

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yun Zhou.

Ethics declarations

Xiao-Yun Zhou, Yao Guo, Mali Shen, and Guang-Zhong Yang declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, XY., Guo, Y., Shen, M. et al. Application of artificial intelligence in surgery. Front. Med. 14, 417–430 (2020). https://doi.org/10.1007/s11684-020-0770-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-020-0770-0

Keywords

Navigation