Skip to main content
Log in

Bacillus amyloliquefaciens Modulate Carbohydrate Metabolism in Rice-PGPR Cross-Talk Under Abiotic Stress and Phytohormone Treatments

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Rice is one of the world’s most important food crop that is severely affected by abiotic stresses. In our earlier study, inoculation with Bacillus amyloliquefaciens SN13 (SN13) improved the growth of rice seedlings under salt and drought stress as compared to other abiotic stresses was demonstrated. Therefore, the present study was carried out to understand the possible mechanism induced by B. amyloliquefaciens for salt and drought tolerance. Further, the role of SN13 in phytohormone-induced stress tolerance by exogenous application of abscisic acid and ethylene was investigated. The SN13 inoculated rice seedlings showed significantly better performance as demonstrated by physio-biochemical, antioxidant enzyme activities, and nutrient analysis. The expression of positively regulated stress-responsive genes was found under abiotic stresses and phytohormone treatments in inoculated seedlings indicating its multifaceted role in abiotic stresses and phytohormone cross-talk in response to PGPR. Inoculated seedlings also showed altered metabolites primarily related to carbohydrates (glucose, galactose, fructose, ribose, trehalose, turanose, hexapyranose, and xylose) and fatty acid (dodecanoic acid, eicosenoic acid, hexadecanoic acid, linolenic acid, and octadecadienoic acid) metabolism. These findings affirm that B. amyloliquefaciens SN13 positively modulates plant nutrient status, stress-responsive genes, and metabolic pathways related to carbohydrate and fatty acid metabolism supporting its involvement in cross-talk between imposed stresses and phytohormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in Vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Arif Y, Sami F, Siddiqui H, Bajguz A, Hayat S (2020) Salicylic acid in relation to other phytohormones in plant: a study towards physiology and signal transduction under challenging environment. Environ Exp Bot 175:104040

    Article  CAS  Google Scholar 

  • Baron KN, Schroeder DF, Stasolla C (2014) GEm-Related 5 (GER5), an ABA and stress-responsive GRAM domain protein regulating seed development and inflorescence architecture. Plant Sci 223:153–166

    Article  CAS  PubMed  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  • Batool T, Ali S, Seleiman MF et al (2020) Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Sci Rep 10:16975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beyer WF Jr, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  CAS  PubMed  Google Scholar 

  • Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:1–16

    Article  CAS  Google Scholar 

  • Bisht N, Chauhan PS (2020b) Comparing the growth-promoting potential of Paenibacillus lentimorbus and Bacillus amyloliquefaciens in Oryza sativa L. var. Sarju-52 under suboptimal nutrient conditions. Plant Physiol Biochem 146:187–197

    Article  CAS  PubMed  Google Scholar 

  • Bisht N, Mishra SK, Chauhan PS (2020a) Bacillus amyloliquefaciens inoculation alters physiology of rice (Oryza sativa L. var. IR-36) through modulating carbohydrate metabolism to mitigate stress induced by nutrient starvation. Int J Biol Macromol 143:937–951

    Article  CAS  PubMed  Google Scholar 

  • Bisht N, Tiwari S, Singh PC, Niranjan A, Chauhan PS (2019) A multifaceted rhizobacterium Paenibacillus lentimorbus alleviates nutrient deficiency-induced stress in Cicer arietinum L. Microbiol Res 223:110–119

    Article  PubMed  Google Scholar 

  • Cao X, Wu L, Wu M, Zhu C, Jin Q, Zhang J (2020) Abscisic acid mediated proline biosynthesis and antioxidant ability in roots of two different rice genotypes under hypoxic stress. BMC Plant Biol 20:1–14

    Article  Google Scholar 

  • Carillo P, Gibbon Y (2011) Protocol: extraction and determination of proline. PrometheusWiki, Los Angeles

    Google Scholar 

  • Chauhan PS, Lata C, Tiwari S, Chauhan AS, Mishra SK, Agrawal L, Chakrabarty D, Nautiyal CS (2019) Transcriptional alterations reveal Bacillus amyloliquefaciens-rice cooperation under salt stress. Sci Rep 9:1–13

    Article  Google Scholar 

  • Dahro B, Wang F, Peng T, Liu JH (2016) PtrA/NINV, an alkaline/neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC Plant Biol 16:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixit R, Agrawal L, Srivastava S, Chauhan PS (2022) Paenibacillus lentimorbus enhanced abiotic stress tolerance through lateral root formation and phytohormone regulation. J Plant Growth Regul 41:1–12

    Article  Google Scholar 

  • Domínguez F, Cejudo FJ (2021) Chloroplast dismantling in leaf senescence. J Exp Bot 72:5905–5918

    Article  PubMed  PubMed Central  Google Scholar 

  • Dos Santos RM, Diaz PAE, Lobo LLB, Rigobelo EC (2020) Use of plant growth-promoting rhizobacteria in maize and sugarcane: characteristics and applications. Front Sustain Food Syst 4:136

    Article  Google Scholar 

  • DuBois M, Gilles K, Hamilton J, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • El-Esawi MA, Alaraidh IA, Alsahli AA, Alamri SA, Ali HM, Alayafi AA (2018) Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. Plant Physiol Biochem 132:375–384

    Article  CAS  PubMed  Google Scholar 

  • Elsheery NI, Cao K-F (2008) Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. Acta Physiol Planta 30:769–777

    Article  CAS  Google Scholar 

  • García JE, Maroniche G, Creus C, Suárez-Rodríguez R, Ramirez-Trujillo JA, Groppa MD (2017) In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiol Res 202:21–29

    Article  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Gou L, Zhuo C, Lu S, Guo Z (2020) A Universal Stress Protein from Medicago falcata (MfUSP1) confers multiple stress tolerance by regulating antioxidant defense and proline accumulation. Environ Exp Bot 178:104168

    Article  CAS  Google Scholar 

  • GroBkinsky DK, van der Graaff E, Roitsch T (2016) Regulation of abiotic and biotic stress responses by plant hormones. In: Collinge DB (ed) Plant Pathogen Resistance Biotechnology, 1st edn. Wiley, New York, p 131

    Chapter  Google Scholar 

  • Guo H, Wang R, Garfin GM, Zhang A, Lin D (2021) Rice drought risk assessment under climate change: Based on physical vulnerability a quantitative assessment method. Sci Total Environ 751:141481

    Article  CAS  PubMed  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:96–102

    CAS  Google Scholar 

  • Hasanuzzaman M, Parvin K, Bardhan K, Nahar K, Anee TI, Masud AAC, Fotopoulos V (2021) Biostimulants for the regulation of reactive oxygen species metabolism in plants under abiotic stress. Cells 10:2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha-Tran DM, Nguyen TTM, Hung SH, Huang E, Huang CC (2021) Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: a review. Int J Mol Sci 22:3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He M, Ding NZ (2020) Plant unsaturated fatty acids: multiple roles in stress response. Front Plant Sci 11:562785

    Article  PubMed  PubMed Central  Google Scholar 

  • He Y, Pantigoso HA, Wu Z, Vivanco JM (2019) Co-inoculation of Bacillus sp. and Pseudomonas putida at different development stages acts as a biostimulant to promote growth, yield and nutrient uptake of tomato. J Appl Microbiol 127:196–207

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hemeda HM, Klein BP (1990) Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J Food Sci 55:184–185

    Article  CAS  Google Scholar 

  • Hussain S, Huang J, Ahmad S, Nanda S, Anwar S, Shakoor A, Zhu C, Zhu L, Cao X, Jin Q (2020) Rice production under climate change: adaptations and mitigating strategies. Environment, climate plant and vegetation growth. Springer, Cham, pp 659–686

    Google Scholar 

  • Iqbal Z, Iqbal MS, Khan MIR, Ansari MI (2021) Toward integrated multi-omics intervention: rice trait improvement and stress management. Front Plant Sci 12:659–686

    Article  Google Scholar 

  • Joshi B, Chaudhary A, Singh H, Kumar PA (2020a) Prospective evaluation of individual and consortia plant growth promoting rhizobacteria for drought stress amelioration in rice (Oryza sativa L.). Plant Soil 457:225–240

    Article  CAS  Google Scholar 

  • Joshi R, Sahoo KK, Singh AK, Anwar K, Pundir P, Gautam RK, Krishnamurthy SL, Sopory SK, Pareek A, Singla-Pareek SL (2020b) Enhancing trehalose biosynthesis improves yield potential in marker-free transgenic rice under drought, saline, and sodic conditions. J Exp Bot 71:653–668

    Article  CAS  PubMed  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–229

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Ali S, Shahid MA, Mustafa A, Sayyed RZ, Curá JA (2021) Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cells 10:1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khizar M, Shi J, Saleem S, Liaquat F, Ashraf M, Latif S, Haroon U, Hassan SW, Rehman SU, Chaudhary HJ, Quraishi UM (2020) Resistance associated metabolite profiling of Aspergillus leaf spot in cotton through non-targeted metabolomics. PLoS ONE 15:e0228675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kongdin M, Mahong B, Lee SK, Shim SH, Jeon JS, Ketudat Cairns JR (2021) Action of multiple rice β-glucosidases on abscisic acid glucose ester. Int J Mol Sci 22:7593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosar F, Akram NA, Sadiq M et al (2019) Trehalose: a key organic osmolyte effectively involved in plant abiotic stress tolerance. J Plant Growth Regul 38:606–618

    Article  CAS  Google Scholar 

  • Lata C, Yadav A, Prasad M (2011) Role of plant transcription factors in abiotic stress tolerance. In: Shanker A, Venkateswarlu B (eds) Abiotic stress response in plants. INTECH Open Access Publishers, London, pp 269–296

    Google Scholar 

  • Li X, Sun P, Zhang Y, Jin C, Guan C (2020) A novel PGPR strain Kocuria rhizophila Y1 enhances salt stress tolerance in maize by regulating phytohormone levels, nutrient acquisition, redox potential, ion homeostasis, photosynthetic capacity and stress-responsive genes expression. Environ Exp Bot 174:104023

    Article  CAS  Google Scholar 

  • Li X, Wei W, Li F, Zhang L, Deng X, Liu Y, Yang S (2019) The plastidial glyceraldehyde-3-phosphate dehydrogenase is critical for abiotic stress response in wheat. Int J Mol Sci 20:1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry–based metabolite profiling in plants. Nat Protoc 1:387–396

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Mao B, Yuan D, Chu C, Duan M (2021) Salt tolerance in rice: physiological responses and molecular mechanisms. Crop J 10:13–25

    Article  Google Scholar 

  • Ma Y, Dias MC, Freitas H (2020) Drought and salinity stress responses and microbe-induced tolerance in plants. Front Plant Sci. https://doi.org/10.3389/fpls.2020.591911

    Article  PubMed  PubMed Central  Google Scholar 

  • Magwanga RO, Lu P, Kirungu JN, Dong Q, Cai X, Zhou Z, Wang X, Hou Y, Xu Y, Peng R, Agong SG (2019) Knockdown of cytochrome P450 genes Gh_D07G1197 and Gh_A13G2057 on chromosomes D07 and A13 reveals their putative role in enhancing drought and salt stress tolerance in Gossypium hirsutum. Genes 10:226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathan J, Singh A, Ranjan A (2021) Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15 in rice. Physiol Plant 171:620–637

    Article  CAS  PubMed  Google Scholar 

  • Mellidou I, Aggeliki A, Anastasia P, Kleopatra L, Savvas G, Evangelos K, Van de Bram P, Katerina (2021) Comparative transcriptomics and metabolomics reveal an intricate priming mechanism involved in pgpr-mediated salt tolerance in tomato. Front Plant Sci 12:713984

    Article  PubMed  PubMed Central  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    Article  CAS  PubMed  Google Scholar 

  • Panda A, Rangani J, Parida AK (2021) Unraveling salt responsive metabolites and metabolic pathways using non-targeted metabolomics approach and elucidation of salt tolerance mechanisms in the xero-halophyte Haloxylon salicornicum. Plant Physiol Biochem 158:284–296

    Article  CAS  PubMed  Google Scholar 

  • Patel MK, Kumar M, Li W, Luo Y, Burritt DJ, Alkan N, Tran LSP (2020) Enhancing salt tolerance of plants: from metabolic reprogramming to exogenous chemical treatments and molecular approaches. Cells 9:2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porcel R, Zamarreño ÁM, García-Mina JM, Aroca R (2014) Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol 14:1–12

    Article  Google Scholar 

  • Rouyi C, Baiya S, Lee SK, Mahong B, Jeon JS, Ketudat-Cairns JR, Ketudat-Cairns M (2014) Recombinant expression and characterization of the cytoplasmic rice β-glucosidase Os1BGlu4. PLoS ONE 9:96712

    Article  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:30

    Google Scholar 

  • Samanta S, Singh A, Banerjee A, Roychoudhury A (2020) Exogenous supplementation of melatonin alters representative organic acids and enzymes of respiratory cycle as well as sugar metabolism during arsenic stress in two contrasting indica rice cultivars. J Biotechnol 324:220–232

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B (2019) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9:285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui MH, Mukherjee S, Kumar R, Alansi S, Shah AA, Kalaji HM, Javed T, Raza A (2022) Potassium and melatonin-mediated regulation of fructose-1, 6-bisphosphatase (FBPase) and sedoheptulose-1, 7-bisphosphatase (SBPase) activity improve photosynthetic efficiency, carbon assimilation and modulate glyoxalase system accompanying tolerance to cadmium stress in tomato seedlings. Plant Physiol Biochem 171:49–65

    Article  CAS  PubMed  Google Scholar 

  • Taïbi K, Taïbi F, Abderrahim LA, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S. Afr. J. Bot 105:306–312

    Article  Google Scholar 

  • Sihi S, Bakshi S, Maiti S, Nayak A, Sengupta DN (2022) Analysis of DNA polymerase λ activity and gene expression in response to salt and drought stress in Oryza sativa indica rice cultivars. J Plant Growth Regul 41:1–17

    Article  Google Scholar 

  • Srivastava S, Bist V, Srivastava S, Singh PC, Trivedi PK, Asif MH et al (2016) Unraveling aspects of Bacillus amyloliquefaciens mediated enhanced production of rice under biotic stress of Rhizoctonia solani. Front Plant Sci 7:587

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Chaudhry V, Mishra A, Chauhan PS, Rehman A, Yadav A et al (2012) Gene expression profiling through microarray analysis in Arabidopsis thaliana colonized by Pseudomonas putida MTCC5279, a plant growth promoting rhizobacterium. Plant Signal Behav 7:235–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavanti TR, de Melo AAR, Moreira LDK, Sanchez DEJ, dos Santos SR, da Silva RM, Dos Reis AR (2021) Micronutrient fertilization enhances ROS scavenging system for alleviation of abiotic stresses in plants. Plant Physiol Biochem 160:386–396

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Gupta SC, Chauhan PS, Lata C (2021) An OsNAM gene plays important role in root rhizobacteria interaction in transgenic Arabidopsis through abiotic stress and phytohormone crosstalk. Plant Cell Rep 40:143–155

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Nutan KK, Deshmukh R, Sarsu F, Gupta KJ, Singh AK, Singla-Pareek SL, Pareek A (2022) Seedling-stage salinity tolerance in rice: decoding the role of transcription factors. Physiol Plant 174:13685

    Article  Google Scholar 

  • Tiwari S, Prasad V, Chauhan PS, Lata C (2017) Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Front Plant Sci 8:1510

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Shweta S, Prasad M, Lata C (2020) Genome-wide investigation of GRAM-domain containing genes in rice reveals their role in plant-rhizobacteria interactions and abiotic stress responses. Int J Biol Macromol 156:1243–1257

    Article  CAS  PubMed  Google Scholar 

  • Viana VE, Aranha BC, Busanello C, Maltzahn LE, Panozzo LE, de Oliveira AC, Rombaldi CV, Pegoraro C (2022) Metabolic profile of canola (Brassica napus L.) seedlings under hydric, osmotic and temperature stresses. Plant Stress 3:100059

    Article  CAS  Google Scholar 

  • Waters BM, Uauy C, Dubcovsky J, Grusak MA (2009) Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J Exp Bot 60:4263–4274

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Wang X, Zhang L (2018) Structural and functional dynamics of dehydrins: a plant protector protein under abiotic stress. Int J Mol Sci 19:3420

    Article  PubMed  PubMed Central  Google Scholar 

  • Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez-Cadenas A (2017) Plant adaptations to the combination of drought and high temperatures. Physiol Plant 162:2–12

    Article  PubMed  Google Scholar 

  • Zhang K, Zhang Y, Chen G, Tian J (2009) Genetic analysis of grain yield and leaf chlorophyll content in common wheat. Cereal Res Commun 37:499–511

    Article  CAS  Google Scholar 

  • Zhao B, Liu Q, Wang B, Yuan F (2021) Roles of phytohormones and their signaling pathways in leaf development and stress responses. J Agric Food Chem 69:3566–3584

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Chen F, Zhao S, Yang C, Meng Y, Shuai H, Luo X, Dai Y, Yin H, Du J, Liu J (2019) DA-6 promotes germination and seedling establishment from aged soybean seeds by mediating fatty acid metabolism and glycometabolism. J Exp Bot 70:101–114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Director, CSIR-National Botanical Research Institute for providing the study with facilities and support. This study was made possible by the in-house project OLP109 and the CSIR-funded project MLP049. Harshita Joshi is grateful for the scholarship she received from DST-INSPIRE in New Delhi.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceived and coordinated by PSC, VP, and HJ. HJ: has conducted the experiments and analysed the data. SKM and NB: helped with the experiments and discussed the outcomes. The manuscript was written and edited by HJ, NB, and PSC.

Corresponding author

Correspondence to Puneet Singh Chauhan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Axel mithofer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1494 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, H., Bisht, N., Mishra, S.K. et al. Bacillus amyloliquefaciens Modulate Carbohydrate Metabolism in Rice-PGPR Cross-Talk Under Abiotic Stress and Phytohormone Treatments. J Plant Growth Regul 42, 4466–4483 (2023). https://doi.org/10.1007/s00344-023-10913-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-023-10913-4

Keywords

Navigation