Skip to main content

Advertisement

Log in

Activation of Photorespiration Facilitates Drought Stress Tolerance in Lotus corniculatus

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Photorespiration is the process that recycles 2-phosphoglycolate back to 3-phosphoglycerate resulting from the oxygenase activity of Rubisco. Recent studies proved the importance of photorespiration for plant survival under stress conditions, including drought stress. In the present study, physiological, biochemical and molecular responses of a moderately drought-tolerant plant Lotus corniculatus to PEG-mediated drought stress were examined. Growth, stomatal conductance (gs), maximum quantum yield of photosystem II (Fv/Fm), CO2 assimilation (A), electron transport (ETR) and transpiration rates (E) were decreased, whilst intercellular CO2 concentrations (Ci), non-photochemical quenching (NPQ) and photorespiration rates were increased in the drought stress-exposed plants. Activities and expression profiles of photorespiratory cycle enzymes correlated well with the increased photorespiration rates. In the line of our results, we conclude that the activation of photorespiration for recycling 2-phosphoglycolate (2PG) to chloroplast facilitated the maintenance of growth and drought stress tolerance in L. corniculatus. Accordingly, we can speculate that drought stress exerted by PEG20 (20% PEG6000) with an osmotic pressure of -0.73 MPa may be a threshold level for drought tolerance in L. corniculatus since the long-term effects of PEG20 on tolerance-related parameters (RGR, membrane integrity, leaf water status and photosynthesis) were more remarkable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  • Abogadallah GM (2011) Differential regulation of photorespiratory gene expression by moderate and severe salt and drought stress in relation to oxidative stress. Plant Sci 180:540–547

    Article  CAS  PubMed  Google Scholar 

  • Anjum SA, Xie X, Wang L (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agr Res 6:2026–2032

    Google Scholar 

  • Aranjuelo I, Molero G, Erice G, Avice JC, Nogués S (2011) Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). J Exp Bot 62:111–123

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bergmeyer N (1970) Methoden der enzymatischen analyse. Akademie Verlag, Berlin, pp 636–647

    Google Scholar 

  • Biehler K, Fock H (1996) Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiol 112:265–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biosalinity Awareness Project (2020) http://www.biosalinity.org/salttolerant_plants.htm

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of mic-rogram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brestic M, Cornic G, Fryer MJ, Baker NR (1995) Does photorespiration protect the photosynthetic apparatus in French bean leaves from photo inhibition during drought stress? Planta 196:450–457

    Article  CAS  Google Scholar 

  • Brisson LF, Zelitch I, Havir EA (1998) Manipulation of catalase levels produces altered photosynthesis in transgenic tobacco plants. Plant Physiol 116:259–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos PS, Pham Thi AT (1997) Effects of an abscisic acid pretreatment on membrane leakage and lipid composition of Vigna unguiculata leaf discs subjected to osmotic stress. Plant Sci 130:11–18

    Article  CAS  Google Scholar 

  • Damayanthi MMN, Mohotti AJ, Nissanka SP (2010) Comparison of tolerant ability of mature field grown tea (Camellia sinensis L.) cultivars exposed to a drought stress in passara area. Trop Agr Res 22:66–75

    Article  Google Scholar 

  • Dellero Y, Jossier M, Schmitz J, Maurino VG, Hodges M (2016) Photorespiratory glycolate–glyoxylate metabolism. J Exp Bot 67(10):3041–3052

    Article  CAS  PubMed  Google Scholar 

  • Dewar RC (1997) A simple model of light and water use evaluated for Pinus ra-diata. Tree Physiol 17:259–265

    Article  CAS  PubMed  Google Scholar 

  • Diaz P, Borsani O, Márquez A, Monza J (2005) Nitrogen metabolism in relation to drought stress responses in cultivated and model Lotus species. Lotus Newsletter 35(1):83–92

    Google Scholar 

  • Diaz P, Betti M, Sanchez DH, Udvardi MK, Monza J, Marquez AJ (2010) Deficiency in plastidic glutamine synthetase alters proline metabolism and transcriptomic response in Lotus japonicus under drought stress. New Phytol 188:1001–1013

    Article  CAS  PubMed  Google Scholar 

  • Escaray FJ, Menendez AB, Gárriz A (2012) Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils. Plant Sci 182:121–133

    Article  CAS  PubMed  Google Scholar 

  • Faria AP, Lemos-Filho JP, Modolo LV, França MGC (2013) Electrolyte leakage and chlorophyll a fluorescence amongst castor bean cultivars under induced water deficit. Acta Physiol Plant 35:119–128

    Article  CAS  Google Scholar 

  • Flügel F, Timm S, Arrivault S, Florian A, Stitt M, Fernie AR, Bauwe H (2017) The Photorespiratory metabolite 2-phosphoglycolate regulates photosynthesis and starch accumulation in Arabidopsis. Plant Cell 29:2537–2551

    Article  PubMed  PubMed Central  Google Scholar 

  • Gambetta GA, Herrera JC, Dayer S, Feng Q, Hochberg U, Castellarin SD (2020) The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance. J Exp Bot 71(16):4658–4676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan X, Gu S (2009) Photorespiration and photoprotection of grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) under water stress. Photosynthetica 47:437–444

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. California Agricultural Experimental Station Circular No. 347. University of California, Berkeley. pp. 1–32

  • Hochberg U, Degu A, Fait A, Rachmilevitch S (2013) Near isohydric grapevine cultivar displays higher photosynthetic efficiency and photorespiration rates under drought stress as compared with near anisohydric grapevine cultivar. Physiol Plant 147:443–452

    Article  CAS  PubMed  Google Scholar 

  • Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T (2000) Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mol Biol 43:103–111

    Article  CAS  PubMed  Google Scholar 

  • Hunt R, Causton DR, Shipley B, Askew AP (2002) A modern tool for classical plant growth analysis. Ann Bot 90:485–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iannucci A, Russo M, Arena L, Di Fonzo N, Martiniello P (2002) Water deficit effects on osmotic adjustment and solute accumulation in leaves of annual clovers. Europ J Agr 16:111–122

    Article  Google Scholar 

  • Igarashi D, Tsuchida H, Miyao M, Ohsumi C (2006) Glutamate: glyoxylate aminotransferase modulates amino acid content during photorespiration. Plant Physiol 142:901–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inostroza L, Acuña H, Tapia G (2015) Relationships between phenotypic variation in osmotic adjustment, water-use efficiency, and drought tolerance of seven cultivars of Lotus corniculatus L. Chilean J Agr Res 75(1):1–10

    Google Scholar 

  • Jiang J, Su M, Chen Y, Gao N, Jiao C, Sun Z, Wang C (2013) Correlation of drought resistance in grass pea (Lathyrus sativus) with reactive oxygen species scavenging and osmotic adjustment. Biologia 68:231–240

    Article  CAS  Google Scholar 

  • Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Kostopoulou P, Karatassiou M (2017) Lotus corniculatus L. response to carbon dioxide concentration and radiation level variations. Photosynthetica 55(3):522–531

    Article  CAS  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384:557–560

    Article  CAS  Google Scholar 

  • López M, Herrera Cervera JA, Iribarne C, Tejera NA, Lluch C (2008) Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: nodule carbon metabolism. J Plant Physiol 165:641–650

    Article  PubMed  Google Scholar 

  • Madhava Rao KV, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

    Article  CAS  Google Scholar 

  • Money NP (1989) Osmotic pressure of aqueous polyethylene glycols. Plant Physiol 91:766–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogren WL (1971) Oxygen regulation of photosynthesis, photorespiration, and crop productivity. Proc Can Soc Plant Physiol 11:15–16

    Google Scholar 

  • Ozkur O, Ozdemir F, Bor M, Türkan I (2009) Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. Environ Exp Bot 66:487–492

    Article  CAS  Google Scholar 

  • Pareek A, Sopory SK, Bohnert HK, Govindjee (2010) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, Dordrecht

    Book  Google Scholar 

  • Peguero Pina JJ, Sancho Knapik D, Morales F, Flexas J, Gil Pelegrín E (2009) Differential photosynthetic performance and photoprotection mechanisms of three Mediterranean evergreen oaks under severe drought stress. Funct Plant Biol 36:453–462

    Article  PubMed  Google Scholar 

  • Peterhansel C, Maurino VG (2011) Photorespiration redesigned. Plant Physiol 155:49–55

    Article  CAS  PubMed  Google Scholar 

  • Randall DD, Tolbert NE, Gremel D (1971) 3-Phosphoglycerate phosphatase in plants II. Distribution, physiological considerations, and comparison with P-glycolate phosphatase. Plant Physiol 48:480–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sainz M, Díaz P, Monza J, Borsani O (2010) Heat stress results in loss of chloroplast Cu/Zn superoxide dismutase and increased damage to Photosystem II in combined drought-heat stressed Lotus japonicus. Physiol Plant 140:46–56

    Article  CAS  PubMed  Google Scholar 

  • Shim SH, Lee SK, Lee DW, Brilhaus D, Wu G, Ko S, Lee CH, Weber APM, Jeon JS (2020) Loss of function of rice plastidic glycolate/ glycerate translocator 1 impairs photorespiration and plant growth. Front Plant Sci 10:1726

    Article  PubMed  PubMed Central  Google Scholar 

  • Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53:258–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y, Fujimori T, Kanno K, Sasaki A, Ohashi Y, Makino A (2012) Metabolome analysis of photosynthesis and the related primary metabolites in the leaves of transgenic rice plants with increased or decreased Rubisco content. Plant Cell Environ 35:1369–1379

    Article  CAS  PubMed  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Cai H, Zhai H, Luo X, Wang Z, Cui L, Bai X (2014) Overexpression of glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Cell Tissue Organ Cult. https://doi.org/10.1007/s11240-014-0463-y

    Article  Google Scholar 

  • Timm S, Hagemann M (2020) Photorespiration—how is it regulated and how does it regulate overall plant metabolism? J Exp Bot 71(14):3955–3965

    Article  CAS  PubMed  Google Scholar 

  • Timm S, Florian A, Fernie AR, Bauwe H (2016) The regulatory interplay between photorespiration and photosynthesis. J Exp Bot 67:2923–2929

    Article  CAS  PubMed  Google Scholar 

  • Valentini R, Epron D, De Angelis P, Matteucci G, Dreyer E (1995) In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Quercus cerris L.) leaves: diurnal cycles un-der different levels of water supply. Plant Cell Environ 18:631–640

    Article  CAS  Google Scholar 

  • Varshney RK, Thudi M, Pandey MK, Tardieu F, Ojiewo C, Vadez V, Whitbread AM, Siddique KHM, Nguyen HT, Carberry PS, Bergvinson D (2018) Accelerating genetic gains in legumes for the development of prosperous smallholder agriculture: integrating genomics, phenotyping, systems modelling and agronomy. J Exp Bot 69(13):3293–3312

    Article  CAS  PubMed  Google Scholar 

  • Von Caemmerer S (2020) Rubisco carboxylase/oxygenase: from the enzyme to the globe: a gas exchange perspective. J Plant Physiol 252:1–9

    Google Scholar 

  • Wada S, Miyake C, Makino A, Suzuki Y (2020) Photorespiration coupled with CO2 assimilation protects photosystem I from photoinhibition under moderate poly (ethylene glycol)-induced osmotic stress in rice. Front Plant Sci 11:1121

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker BJ, South PF, Ort DR (2016) Physiological evidence for plasticity in glycolate/glycerate transport during photorespiration. Photosynt Res 129:93–103

    Article  CAS  Google Scholar 

  • Zelitch I (1971) Photosynthesis photorespiration and plant productivity. Academic Press, New York London, p 348

    Google Scholar 

Download references

Acknowledgements

This work was supported by grant-in-aid 12-FEN-057 from Ege University Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

FO and MB: Conceived the research plans and designed the experiments; AGU, SY and MB: performed the experiments; MB and IT: wrote the article.

Corresponding author

Correspondence to Melike Bor.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflicts of interest.

Ethical Approval

Not applicable.

Consent to Participate

All the authors agreed on participation.

Consent for Publication

All the authors agreed on publication.

Additional information

Handling Editor: Parvaiz Ahmad.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ünlüsoy, A.G., Yolcu, S., Bor, M. et al. Activation of Photorespiration Facilitates Drought Stress Tolerance in Lotus corniculatus. J Plant Growth Regul 42, 2088–2101 (2023). https://doi.org/10.1007/s00344-022-10683-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10683-5

Keywords

Navigation