Skip to main content
Log in

Genome-Wide Identification of GRAS Transcription Factors and Their Potential Roles in Growth and Development of Rose (Rosa chinensis)

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Plant-specific GRAS transcription factors (TFs) are reported to play an essential role in regulating several biological processes, such as plant growth and development, phytochrome signal, arbuscular mycorrhiza symbiosis, stress responses. However, rose GRAS genes are still unexplored. In this study, 59 rose GRAS genes (RcGRAS) were identified and were grouped into 17 subfamilies. Gene structure analyses showed that most of the RcGRAS genes were intronless and were relatively conserved. Gene expression analysis in various tissues (leaf, stem and flower bud) identified the tissue-specific expression of GRAS genes. For instance, RcGRAS30 (SCL3) and RcGRAS9 (HAM) got > 20 fold and > 5 folds upregulated in stem as comparison to leaf, and suggested their possible involvement in different growth and development processes. Further, significant difference in expression of GRAS genes in response to exogenous gibberellin (GA) and drought stress alluded the potential functions of these genes in hormone and stress responses. In summary, a comprehensive exploration of the rose GRAS gene family was performed and also their possible role in growth, development, stress and hormonal response were depicted. These basic insights can be utilized for further functional characterization-based studies on GRAS genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 60:1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biłas R, Szafran K, Hnatuszko-Konka K, Kononowicz AK (2016) Cis-regulatory elements used to control gene expression in plants. Plant Cell Tissue Organ Cult 127:269–287

    Article  Google Scholar 

  • Bolle C (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218:683–692

    Article  CAS  PubMed  Google Scholar 

  • Bolle C (2016). Functional aspects of GRAS family proteins. In: Plant transcription factors, Elsevier, pp 295–311

  • Bolle C, Koncz C, Chua NH (2000) PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes Dev 14:1269–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cenci A, Rouard M (2017) Evolutionary analyses of GRAS transcription factors in angiosperms. Front Plant Sci 8:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang W, Sun M, Zhang M, Tang Z, Sheng J, Liu Y, Song B, Li J, Zhao K, Wu J (2021) Genome-wide comparison of the GRAS protein family in eight Rosaceae species and GRAS gene expression analysis in Chinese white pear (Pyrus bretschneideri Rehder). N Z J Crop Hortic Sci 3:1–23

    Google Scholar 

  • Chen H, Li H, Lu X, Chen L, Liu J, Wu H (2019) Identification and expression analysis of GRAS transcription factors to elucidate candidate genes related to stolons, fruit ripening and abiotic stresses in woodland strawberry (Fragaria vesca). Int J Mol Sci 20:4593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D, Luo D, Harberd NP, Peng J (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131:1055–1064

    Article  CAS  PubMed  Google Scholar 

  • Chou KC, Shen HB (2008) Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat Protoc 3:153

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, Gallagher KL, Wang JY, Blilou I, Scheres B, Benfey PN (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316:421–425

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Zhuang Z, Zhao PX (2018) psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res 46:W49–W54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davière J-M, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151

    Article  PubMed  Google Scholar 

  • Davière J-M, Achard P (2016) A pivotal role of DELLAs in regulating multiple hormone signals. Mol Plant 9:10–20

    Article  PubMed  Google Scholar 

  • Dhondt S, Coppens F, De Winter F, Swarup K, Merks RMH, Inz D, Bennett MJ, Beemster GTS (2010) SHORT-ROOT and SCARECROW regulate leaf growth in Arabidopsis by stimulating S-phase progression of the cell cycle. Plant Physiol 154:1183–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the arabidopsis root. Cell 86:423–433

    Article  PubMed  Google Scholar 

  • Dolgikh AV, Kirienko AN, Tikhonovich IA, Foo E, Dolgikh EA (2019) The DELLA proteins influence the expression of cytokinin biosynthesis and response genes during nodulation. Front Plant Sci 10:432

    Article  PubMed  PubMed Central  Google Scholar 

  • Engstrom EM (2012) HAM proteins promote organ indeterminacy: but how? Plant Signal Behav 7:227–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan T, Li X, Yang W, Xia K, Ouyang J, Zhang M (2015) Rice osa-miR171c mediates phase change from vegetative to reproductive development and shoot apical meristem maintenance by repressing four OsHAM transcription factors. PLoS ONE 10:e0125833

    Article  PubMed  PubMed Central  Google Scholar 

  • Fode B, Siemsen T, Thurow C, Weigel R, Gatz C (2008) The Arabidopsis GRAS protein SCL14 interacts with Class II TGA transcription factors and is essential for the activation of stress-inducible promoters. Plant Cell 20:3122–3135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukazawa J, Teramura H, Murakoshi S, Nasuno K, Nishida N, Ito T, Yoshida M, Kamiya Y, Yamaguchi S, Takahashi Y (2014) DELLAs function as coactivators of GAI-ASSOCIATED FACTOR1 in regulation of gibberellin homeostasis and signaling in arabidopsis. Plant Cell 26:2920–2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greb T, Clarenz O, Schäfer E, Müller D, Herrero R, Schmitz G, Theres K (2003) Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev 17:1175–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimplet J, Agudelo-Romero P, Teixeira RT, Martinez-Zapater JM, Fortes AM (2016) Structural and functional analysis of the GRAS gene family in grapevine indicates a role of GRAS proteins in the control of development and stress responses. Front Plant Sci 7:353

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Wu H, Li X, Li Q, Zhao X, Duan X, An Y, Lv W, An H (2017) Identification and expression of GRAS family genes in maize (Zea mays L.). PLoS ONE 12:e0185418

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo P, Wen J, Yang J, Ke Y, Wang M, Liu M, Ran F, Wu Y, Li P, Li J, Du H (2019) Genome-wide survey and expression analyses of the GRAS gene family in Brassica napus reveals their roles in root development and stress response. Planta 250:1051–1072

    Article  CAS  PubMed  Google Scholar 

  • Hakoshima T (2018) Structural basis of the specific interactions of GRAS family proteins. FEBS Lett 592:489–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y, Yu J, Zhao T, Cheng T, Wang J, Yang W, Pan H, Zhang Q (2019) Dissecting the genome-wide evolution and function of R2R3-MYB transcription factor family in Rosa chinensis. Genes (basel) 10:823

    Article  CAS  PubMed  Google Scholar 

  • Hartmann RM, Schaepe S, Nübel D, Petersen AC, Bertolini M, Vasilev J, Küster H, Hohnjec N (2019) Insights into the complex role of GRAS transcription factors in the arbuscular mycorrhiza symbiosis. Sci Rep 9:3360

    Article  PubMed  PubMed Central  Google Scholar 

  • Heckmann AB, Lombardo F, Miwa H, Perry JA, Bunnewell S, Parniske M, Wang TL, Downie JA (2006) Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume. Plant Physiol 142:1739–1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heerklotz D, Döring P, Bonzelius F, Winkelhaus S, Nover L (2001) The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2. Mol Cell Biol 21:1759–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Xian Z, Kang X, Tang N, Li Z (2015) Genome-wide identification, phylogeny and expression analysis of GRAS gene family in tomato. BMC Plant Biol 15:209

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang W, Peng S, Xian Z, Lin D, Hu G, Yang L, Ren M, Li Z (2017) Overexpression of a tomato miR171 target gene SlGRAS24 impacts multiple agronomical traits via regulating gibberellin and auxin homeostasis. Plant Biotechnol J 15:472–488

    Article  CAS  PubMed  Google Scholar 

  • Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M (2002) The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14:57–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosugi S, Hasebe M, Tomita M, Yanagawa H (2009) Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci USA 106:10171–10176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MH, Kim B, Song SK, Heo JO, Yu NI, Lee SA, Kim M, Kim DG, Sohn SO, Lim CE, Chang KS, Lee MM, Lim J (2008) Large-scale analysis of the GRAS gene family in Arabidopsis thaliana. Plant Mol Biol 67:659–670

    Article  CAS  PubMed  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Sun B, Xie F, Gong R, Luo Y, Zhang F, Yan Z, Tang H (2019) Identification of the GRAS gene family in the Brassica juncea genome provides insight into its role in stem swelling in stem mustard. Peer J 7:e6682

    Article  PubMed  PubMed Central  Google Scholar 

  • Li D, Liu X, Shu L, Zhang H, Zhang S, Song Y, Zhang Z (2020) Global analysis of the AP2/ERF gene family in rose (Rosa chinensis) genome unveils the role of RcERF099 in Botrytis resistance. BMC Plant Biol 20:1–15

    Article  Google Scholar 

  • Li W, Geng Z, Zhang C, Wang K, Jiang X (2021) Whole-genome characterization of Rosa chinensis AP2/ERF transcription factors and analysis of negative regulator RcDREB2B in Arabidopsis. BMC Genomics 22:1–20

    Google Scholar 

  • Liu X, Widmer A (2014) Genome-wide comparative analysis of the GRAS gene family in populus, arabidopsis and rice. Plant Mol Biol Rep 32:1129–1145

    Article  CAS  Google Scholar 

  • Liu Y, Huang W, Xian Z, Hu N, Lin D, Ren H, Chen J, Su D, Li Z (2017) Overexpression of SlGRAS40 in tomato enhances tolerance to abiotic stresses and influences auxin and gibberellin signaling. Front Plant Sci 8:1659

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Li D, Zhang S, Xu Y, Zhang Z (2019a) Genome-wide characterization of the rose (Rosa chinensis) WRKY family and role of RcWRKY41 in gray mold resistance. BMC Plant Biol 19:1–12

    Article  Google Scholar 

  • Liu M, Huang L, Ma Z, Sun W, Wu Q, Tang Z, Bu T, Li C, Chen H (2019b) Genome-wide identification, expression analysis and functional study of the GRAS gene family in tartary buckwheat (Fagopyrum tataricum). BMC Plant Biol 19:342

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma HS, Liang D, Shuai P, Xia XL, Yin WL (2010) The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J Exp Bot 61:4011–4019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Hu X, Cai W, Huang W, Zhou X, Luo Q, Yang H, Wang J, Huang J (2014) Arabidopsis miR171-targeted scarecrow-like proteins bind to GT cis-elements and mediate gibberellin-regulated chlorophyll biosynthesis under light conditions. PLOS Genet 10:e1004519

    Article  PubMed  PubMed Central  Google Scholar 

  • Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lanczycki CJ (2012) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41:D348–D352

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayrose M, Ekengren SK, Melech-Bonfil S, Martin GB, Sessa G (2006) A novel link between tomato GRAS genes, plant disease resistance and mechanical stress response. Mol Plant Pathol 7:593–604

    Article  CAS  PubMed  Google Scholar 

  • Menz I, Lakhwani D, Clotault J, Linde M, Foucher F, Debener T (2020) Analysis of the Rdr1 gene family in different Rosaceae genomes reveals an origin of an R-gene cluster after the split of Rubeae within the Rosoideae subfamily. PLoS ONE 15:e0227428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ (2021) Pfam: the protein families database in 2021. Nucleic Acids Res 49:D412–D419

    Article  CAS  PubMed  Google Scholar 

  • Muntha ST, Zhang L, Zhou Y, Zhao X, Hu Z, Yang J, Zhang M (2019) Phytochrome A signal transduction 1 and CONSTANS-LIKE 13 coordinately orchestrate shoot branching and flowering in leafy Brassica juncea. Plant Biotechnol J 17:1333–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima K, Sena G, Nawy T, Benfey PN (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413:307–311

    Article  CAS  PubMed  Google Scholar 

  • Nakamura N, Hirakawa H, Sato S, Otagaki S, Matsumoto S, Tabata S, Tanaka Y (2018) Genome structure of Rosa multiflora, a wild ancestor of cultivated roses. DNA Res 25:113–121

    Article  CAS  PubMed  Google Scholar 

  • Nan H, Ludlow RA, Lu M, An H (2021) Genome-wide analysis of Dof genes and their response to abiotic stress in rose (Rosa chinensis). Front Genet 12:168

    Article  Google Scholar 

  • Niu G, Rodriguez DS (2009) Growth and physiological responses of four rose rootstocks to drought stress. J Am Soc Hortic Sci 134:202–209

    Article  Google Scholar 

  • Niu X, Chen S, Li J, Liu Y, Ji W, Li H (2019) Genome-wide identification of GRAS genes in Brachypodium distachyon and functional characterization of BdSLR1 and BdSLRL1. BMC Genomics 20:635

    Article  PubMed  PubMed Central  Google Scholar 

  • Park J, Nguyen KT, Park E, Jeon JS, Choi G (2013) DELLA proteins and their interacting RING Finger proteins repress gibberellin responses by binding to the promoters of a subset of gibberellin-responsive genes in Arabidopsis. Plant Cell 25:927–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Z, Chen H, Tan L, Shu H, Varshney RK, Zhou Z, Zhao Z, Luo Z, Chitikineni A, Wang L (2021) Natural polymorphisms in a pair of NSP2 homoeologs can cause loss of nodulation in peanut. J Exp Bot 72:1104–1118

    Article  CAS  PubMed  Google Scholar 

  • Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V, Bohmer MJ, Karl L, Floss DS, Harrison MJ, Parniske M (2016) A CCaMK-CYCLOPS-DELLA complex activates transcription of RAM1 to regulate arbuscule branching. Curr Biol 26:987–998

    Article  CAS  PubMed  Google Scholar 

  • Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18:111–119

    Article  CAS  PubMed  Google Scholar 

  • Randoux M, Jeauffre J, Thouroude T, Vasseur F, Hamama L, Juchaux M, Sakr S, Foucher F (2012) Gibberellins regulate the transcription of the continuous flowering regulator, RoKSN, a rose TFL1 homologue. J Exp Bot 63:6543–6554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, Lemainque A, Vergne P, Moja S, Choisne N, Pont C (2018) The Rosa genome provides new insights into the domestication of modern roses. Nat Genet 50:772–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy SW, Penny D (2007) Patterns of intron loss and gain in plants: intron loss–dominated evolution and genome-wide comparison of O. sativa and A. thaliana. Mol Biol Evol 24:171–181

    Article  CAS  PubMed  Google Scholar 

  • Sabatini S, Heidstra R, Wildwater M, Scheres B (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17:354–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saint-Oyant LH, Ruttink T, Hamama L, Kirov I, Lakhwani D, Zhou NN, Bourke PM, Daccord N, Leus L, Schulz D (2018) A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nat Plants 4:473–484

    Article  Google Scholar 

  • Schultz J, Copley RR, Doerks T, Ponting CP, Bork P (2000) SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28:231–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan Z, Luo X, Wu M, Wei L, Fan Z, Zhu Y (2020) Genome-wide identification and expression of GRAS gene family members in cassava. BMC Plant Biol 20:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidhu NS, Pruthi G, Singh S, Bishnoi R, Singla D (2020) Genome-wide identification and analysis of GRAS transcription factors in the bottle gourd genome. Sci Rep 10:14338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song XM, Liu TK, Duan WK, Ma QH, Ren J, Wang Z, Li Y, Hou XL (2014) Genome-wide analysis of the GRAS gene family in Chinese cabbage (Brassica rapa ssp. pekinensis). Genomics 103:135–146

    Article  CAS  PubMed  Google Scholar 

  • Stecher G, Tamura K, Kumar S (2020) Molecular evolutionary genetics analysis (MEGA) for macOS. Mol Biol Evol 37:1237–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuurman J, Jäggi F, Kuhlemeier C (2002) Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells. Genes Dev 16:2213–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Li X, Fu Y, Zhu Z, Tan L, Liu F, Sun X, Sun X, Sun C (2013) GS6, A Member of the GRAS gene family, negatively regulates grain size in rice. J Integ Plant Biol 55:938–949

    Article  CAS  Google Scholar 

  • Tian C, Wan P, Sun S, Li J, Chen M (2004) Genome-wide analysis of the GRAS gene family in rice and arabidopsis. Plant Mol Biol 54:519–532

    Article  CAS  PubMed  Google Scholar 

  • To VT, Shi Q, Zhang Y, Shi J, Shen C, Zhang D, Cai W (2020) Genome-wide analysis of the gras gene family in barley (Hordeum vulgare L.). Genes 11:553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong H, Jin Y, Liu W, Li F, Fang J, Yin Y, Qian Q, Zhu L, Chu C (2009) DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J 58:803–816

    Article  CAS  PubMed  Google Scholar 

  • Torres-Galea P, Hirtreiter B, Bolle C (2013) Two GRAS proteins, SCARECROW-LIKE21 and PHYTOCHROME A SIGNAL TRANSDUCTION1, function cooperatively in phytochrome a signal transduction. Plant Physiol 161:291–304

    Article  CAS  PubMed  Google Scholar 

  • Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR, Sun T (2004) DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol 135:1008–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee T, Jin H, Marler B, Guo H (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49–e49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YX, Liu ZW, Wu ZJ, Li H, Wang WL, Cui X, Zhuang J (2018) Genome-wide identification and expression analysis of GRAS family transcription factors in tea plant (Camellia sinensis). Sci Rep 8:3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Ding X, Gao Y, Yang S (2020a) Genome-wide identification and characterization of GRAS genes in soybean (Glycine max). BMC Plant Biol 20:415

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang N, Wang K, Li S, Jiang Y, Li L, Zhao M, Jiang Y, Zhu L, Wang Y, Su Y, Wang Y, Zhang M (2020b) Transcriptome-wide identification, evolutionary analysis, and GA stress response of the gras gene family in Panax ginseng C. A Meyer Plants 9:190

    Article  CAS  Google Scholar 

  • Wild M, Davière JM, Cheminant S, Regnault T, Baumberger N, Heintz D, Baltz R, Genschik P, Achard P (2012) The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell 24:3307–3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Chen S, Li T, Ma X, Liang X, Ding X, Liu H, Luo L (2015) OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biol 15:141

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu W, Chen Z, Ahmed N, Han B, Cui Q, Liu A (2016) Genome-wide identification, evolutionary analysis, and stress responses of the GRAS gene family in castor beans. Int J Mol Sci 17:1004

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon EK, Dhar S, Lee MH, Song JH, Lee SA, Kim G, Jang S, Choi JW, Choe JE, Kim JH, Lee MM, Lim J (2016) Conservation and diversification of the SHR-SCR-SCL23 regulatory network in the development of the functional endodermis in arabidopsis shoots. Mol Plant 9:1197–1209

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Hirano K, Sato T, Mitsuda N, Nomoto M, Maeo K, Koketsu E, Mitani R, Kawamura M, Ishiguro S (2014) DELLA protein functions as a transcriptional activator through the DNA binding of the indeterminate domain family proteins. Proc Natl Acad Sci 111:7861–7866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Iyer LM, Aravind L (2012) Bacterial GRAS domain proteins throw new light on gibberellic acid response mechanisms. Bioinformatics 28:2407–2411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Esselink GD, Che D, Fougère-Danezan M, Arens P, Smulders MJM (2013) The diploid origins of allopolyploid rose species studied using single nucleotide polymorphism haplotypes flanking a microsatellite repeat. J Hortic Sci Biotechnol 88:85–92

    Article  CAS  Google Scholar 

  • Zhang B, Liu J, Yang ZE, Chen EY, Zhang CJ, Zhang XY, Li FG (2018) Genome-wide analysis of GRAS transcription factor gene family in Gossypium hirsutum L. BMC Genomics 19:348

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Mi L, Xu L, Yu C, Li C, Chen C (2019) Genome-wide identification, characterization, interaction network and expression profile of GRAS gene family in sweet orange (Citrus sinensis). Sci Rep 9:2156

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Li X, Fan S, Zhou L, Wang Y (2020) Overexpression of HcSCL13, a Halostachys caspica GRAS transcription factor, enhances plant growth and salt stress tolerance in transgenic Arabidopsis. Plant Physiol Biochem 151:243–254

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Council of Scientific and Industrial Research (CSIR) for providing funds (MLP-201), V.J. and V.G. thanks to the Department of Science and technology for the INSPIRE faculty award. V.J. also thanks to the Science and Engineering Research Board (SERB) for the Early Career Research Award. P.K. also thanks to CSIR for Junior Research Fellowship. This manuscript represents CSIR-IHBT Communication Number: 4814.

Author information

Authors and Affiliations

Authors

Contributions

PK: Data curation, Formal analysis, Writing—original draft. VG: Conceptualization, Investigation, Formal analysis, Methodology, Writing-review & editing. EK: Investigation, Formal analysis. SS: Resources, Formal analysis. SK: Supervision, Writing—review & editing, Funding acquisition. VJ: Supervision, Conceptualization, Writing-review & editing, Funding acquisition, Project administration.

Corresponding authors

Correspondence to Vijay Gahlaut or Vandana Jaiswal.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Handling Editor: Weiwei Qi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 766 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, P., Gahlaut, V., Kaur, E. et al. Genome-Wide Identification of GRAS Transcription Factors and Their Potential Roles in Growth and Development of Rose (Rosa chinensis). J Plant Growth Regul 42, 1505–1521 (2023). https://doi.org/10.1007/s00344-022-10635-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10635-z

Keywords

Navigation