Skip to main content

Advertisement

Log in

Salicylic Acid Confers Salt Tolerance in Giant Juncao Through Modulation of Redox Homeostasis, Ionic Flux, and Bioactive Compounds: An Ionomics and Metabolomic Perspective of Induced Tolerance Responses

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

We investigated the stimulatory and/or inhibitory role of exogenous SA in alleviating the salt stress (250, 500 mM NaCl) in Pennisetum giganteum (Giant Juncao) through coordinated induction of redox homeostasis, ionic flux, and bioactive compounds. Salt stress radically impaired root and shoot (growth, fresh, and dry biomass as well as tolerance indices), leaf relative water content, and leaf chlorophyll a/b ratio of Juncao due to higher Na+ and Cl accumulation followed by H2O2 generation, lipid peroxidation (MDA contents), and electrolyte leakage. However, the innate defense response of Juncao counteracted salt-induced damages by osmolytes accumulation combined with orchestrating antioxidants and ionic homeostasis mechanisms. Furthermore, the application of SA had an incremental impact on the development and productivity of high-salinity-exposed Juncao plants by increasing root length, plant biomass, tolerance indices, chlorophyll a/b ratio, and protein contents. Furthermore, SA treatment considerably decreased Na+ and Cl toxicity by orchestrating antioxidant enzymes, ion transport, and secondary metabolism. Notably, the application of SA substantially mitigated the adverse effects of high salinity concentration (500 mM NaCl), owing to the simultaneous upregulation in enzymatic and non-enzymatic antioxidants, nutrient ion flux, alongside chlorogenic acid production. Thus, we concluded that SA enhanced the tolerance capability of Juncao plants in a NaCl concentration-dependent manner. The findings of this study will enable environmentalists and pharmacologists to gain dual farm-level benefits, including animal therapeutics and restoration of salinized soils for arable purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel Latef AAH, Tahjib-Ul-Arif M, Rhaman MS (2021) Exogenous auxin-mediated salt stress alleviation in faba bean (Vicia faba L.). Agronomy 11:547

    Article  CAS  Google Scholar 

  • Abdelaal KA, EL-Maghraby LM, Elansary H, Hafez YM, Ibrahim EI, El-Banna M, El-Esawi M, Elkelish (2020) Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and antioxidant systems. Agronomy 10:26

    Article  CAS  Google Scholar 

  • Adnan MY, Hussain T, Ahmed MZ, Gul B, Khan MA, Nielsen BL (2021) Growth regulation of Desmostachya bipinnata by organ-specific biomass, water relations, and ion allocation responses to improve salt resistance. Acta Physiol Plantarum 43:1–12

    Article  CAS  Google Scholar 

  • Aftab T, Masroor M, Khan A, Idrees M, Naeem M (2010) Salicylic acid acts as potent enhancer of growth, photosynthesis and artemisinin production in Artemisia annua L. J Crop Sci Biotechol 13:183–188

    Article  Google Scholar 

  • Ahanger MA, Agarwal R (2017) Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L.) as influenced by potassium supplementation. Plant Physiol Biochem 115:449–460

    Article  CAS  PubMed  Google Scholar 

  • Ahanger MA, Aziz U, Alsahli AA, Alyemeni MN, Ahmad P (2020) Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis. Biomolecules 10:42

    Article  CAS  Google Scholar 

  • Ahmad P, Alyemeni M, Ahanger M, Egamberdieva D, Wijaya L, Alam P (2018) Salicylic acid (SA) induced alterations in growth, biochemical attributes and antioxidant enzyme activity in faba bean (Vicia faba L.) seedlings under NaCl toxicity. Russ J Plant Physiol 65:104–114

    Article  CAS  Google Scholar 

  • Ahmed S, Ahmed S, Roy SK, Woo SH, Sonawane KD, Shohael AM (2019) Effect of salinity on the morphological, physiological and biochemical properties of lettuce (Lactuca sativa L.) in Bangladesh. Open Agric 4(1):361–373

    Article  Google Scholar 

  • Ahmed S, Karamat M, Haider A, Ahmad MN, Jabeen F, Ansari M (2021) Assessment of the effects of salicylic acid on the yield and the yield characteristics of Pisum sativum L. under fluoride stress. Fluoride 54:27–36

    CAS  Google Scholar 

  • Alhaithloul HAS, Soliman MH (2021) Methyl jasmonate and brassinosteroids: emerging plant growth regulators in plant abiotic stress tolerance and environmental changes. In: Plant growth regulators: signalling under stress conditions 173.

  • Ali B (2020) Salicylic acid: an efficient elicitor of secondary metabolite production in plants. Biocatal Agric Biotechnol 101884.

  • Ali B, Amna JMT, Ali H, Munis MFH, Chaudhary HJ (2017) Influence of endophytic Bacillus pumilus and EDTA on the phytoextraction of Cu from soil by using Cicer arietinum. Int J Phytoremediation 19:14–22

    Article  CAS  PubMed  Google Scholar 

  • Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 164:685–694

    Article  CAS  PubMed  Google Scholar 

  • Athar HuR, Zafar Z, Ashraf M (2015) Glycinebetaine improved photosynthesis in canola under salt stress: evaluation of chlorophyll fluorescence parameters as potential indicators. J Agron Crop Sci 201:428–442

    Article  CAS  Google Scholar 

  • Avalbaev A, Allagulova C, Maslennikova D, Fedorova K, Shakirova F (2020) Methyl jasmonate and cytokinin mitigate the salinity-induced oxidative injury in wheat seedlings. J Plant Growth Regul 1–12.

  • Barrs H, Weatherley P (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  • Batista VCV, Pereira IMC, de Oliveira Paula-Marinho S, Canuto KM, Pereira RDCA, Rodrigues THS, de Menezes Daloso D, Gomes-Filho E, de Carvalho HH (2019) Salicylic acid modulates primary and volatile metabolites to alleviate salt stress-induced photosynthesis impairment on medicinal plant Egletes viscosa. Environ Exp Bot 167:103870

    Article  CAS  Google Scholar 

  • Borrelli GM, Fragasso M, Nigro F, Platani C, Papa R, Beleggia R, Trono D (2018) Analysis of metabolic and mineral changes in response to salt stress in durum wheat (Triticum turgidum ssp. durum) genotypes, which differ in salinity tolerance. Plant Physiol Biochem 133:57–70

    Article  CAS  PubMed  Google Scholar 

  • Bose J, Munns R, Shabala S, Gilliham M, Pogson B, Tyerman SD (2017) Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes. J Exp Bot 68:3129–3143. https://doi.org/10.1093/jxb/erx142

    Article  CAS  PubMed  Google Scholar 

  • Bukhat S, Manzoor H, Zafar ZU, Azeem F, Rasul S (2020) Salicylic acid induced photosynthetic adaptability of Raphanus sativus to salt stress is associated with antioxidant capacity. J Plant Growth Regul 39:809–822

    Article  CAS  Google Scholar 

  • Cai ZQ, Gao Q (2020) Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars. BMC Plant Biol 20:1–15

    Article  CAS  Google Scholar 

  • Chen X, Wang J, Hayat K, Zhang D, Zhou P (2021) Small structures with big impact: Multi-walled carbon nanotubes enhanced remediation efficiency in hyperaccumulator Solanum nigrum L. under cadmium and arsenic stress. Chemosphere 276:130130

    Article  CAS  PubMed  Google Scholar 

  • de Freitas PA, de Carvalho HH, Costa JH, de Souza MR, da Cruz Saraiva KD, de Oliveira FD, Coelho DG, Prisco JT, Gomes-Filho E (2019) Salt acclimation in sorghum plants by exogenous proline: physiological and biochemical changes and regulation of proline metabolism. Plant Cell Rep 38:403–416

    Article  PubMed  CAS  Google Scholar 

  • Egamberdieva D, Wirth S, Bellingrath-Kimura SD, Mishra J, Arora NK (2019) Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front Microbiol 10:2791

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Esawi MA, Elansary HO, El-Shanhorey NA, Abdel-Hamid AM, Ali HM, Elshikh MS (2017) Salicylic acid-regulated antioxidant mechanisms and gene expression enhance rosemary performance under saline conditions. Front Physiol 8:716

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Hady NAAA, ElSayed AI, El-Saadany SS, Deligios PA, Ledda L (2021) Exogenous application of foliar salicylic acid and propolis enhances antioxidant defenses and growth parameters in tomato plants. Plants 10:74

    Article  CAS  PubMed Central  Google Scholar 

  • El-Katony TM, El-Bastawisy ZM, El-Ghareeb SS (2019) Timing of salicylic acid application affects the response of maize (Zea mays L.) hybrids to salinity stress. Heliyon 5:e01547

    Article  PubMed  PubMed Central  Google Scholar 

  • Esan AM, Masisi K, Dada FA, Olaiya CO (2017) Comparative effects of indole acetic acid and salicylic acid on oxidative stress marker and antioxidant potential of okra (Abelmoschus esculentus) fruit under salinity stress. Sci Hortic 216:278–283

    Article  CAS  Google Scholar 

  • Farhangi-Abriz S, Ghassemi-Golezani K (2018) How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicol Environ Saf 147:1010–1016

    Article  CAS  PubMed  Google Scholar 

  • Forghani A, Almodares A, Ehsanpour A (2020) The role of gibberellic acid and paclobutrazol on oxidative stress responses induced by in vitro salt stress in sweet sorghum. Russ J Plant Physiol 67:555–563

    Article  CAS  Google Scholar 

  • Ghafoor M, Ali Q, Malik A (2020) Effects of salicylic acid priming for salt stress tolerance in wheat. Biol Clin Sci Res J 2020:e024–e024

    Article  Google Scholar 

  • Gharbi E, Lutts S, Dailly H, Quinet M (2018) Comparison between the impacts of two different modes of salicylic acid application on tomato (Solanum lycopersicum) responses to salinity. Plant Signal Behav 13:e1469361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghassemi-Golezani K, Farhangi-Abriz S (2018) Foliar sprays of salicylic acid and jasmonic acid stimulate H+-ATPase activity of tonoplast, nutrient uptake and salt tolerance of soybean. Ecotoxicol Environ Saf 166:18–25

    Article  CAS  PubMed  Google Scholar 

  • González L, González-Vilar M (2001) Determination of relative water content. Handbook of plant ecophysiology techniques. Springer, Berlin, pp 207–212

    Google Scholar 

  • Hassannejad S, Lotfi R, Ghafarbi SP, Oukarroum A, Abbasi A, Kalaji HM, Rastogi A (2020) Early identification of herbicide modes of action by the use of chlorophyll fluorescence measurements. Plants 9:529

    Article  CAS  PubMed Central  Google Scholar 

  • Hayat K, Zhou Y, Menhas S, Bundschuh J, Hayat S, Ullah A, Wang J, Chen X, Zhang D, Zhou P (2020) Pennisetum giganteum: An emerging salt accumulating/tolerant non-conventional crop for sustainable saline agriculture and simultaneous phytoremediation. Environ Pollut 265:114876

    Article  CAS  PubMed  Google Scholar 

  • Hiscox J, Israelstam G (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. CAN J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Huang YT, Cai SY, Ruan XL, Chen SY, Mei GF, Ruan GH, Cao DD (2021) Salicylic acid enhances sunflower seed germination under Zn2+ stress via involvement in Zn2+ metabolic balance and phytohormone interactions. Sci Hortic 275:109702

    Article  CAS  Google Scholar 

  • Husen A, Iqbal M, Sohrab SS, Ansari MKA (2018) Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). Agric Food Secur 7(1):1–14

    Article  Google Scholar 

  • Hussain SJ, Khan NA, Anjum NA, Masood A, Khan MIR (2021) Mechanistic elucidation of salicylic acid and sulphur-induced defence systems, nitrogen metabolism, photosynthetic, and growth potential of mungbean (Vigna radiata) under salt stress. J Plant Growth Regul 40:1000–1016

    Article  CAS  Google Scholar 

  • Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34-42

    Article  CAS  Google Scholar 

  • Isayenkov SV, Maathuis FJ (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain M, Vaishnav J (2019) Salt stress induced effects on biochemical parameters in etiolated maize leaf segments during greening. Afr J Biol Sci 1(3):22–31

    CAS  Google Scholar 

  • Jalil SU, Ansari MI (2019) Role of phytohormones in recuperating salt stress. Salt stress, microbes, and plant interactions: mechanisms and molecular approaches. Springer, Berlin, pp 91–104

    Chapter  Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2015) Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul 76:25–40

    Article  CAS  Google Scholar 

  • Jia Y, Liao Z, Chew H, Wang L, Lin B, Chen C, Lu G, Lin Z (2020) Effect of Pennisetum giganteum zx lin mixed nitrogen-fixing bacterial fertilizer on the growth, quality, soil fertility and bacterial community of pakchoi (Brassica chinensis L.). PLoS ONE 15:e0228709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang C, Zu C, Lu D, Zheng Q, Shen J, Wang H, Li D (2017) Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci Rep 7:1–14

    CAS  Google Scholar 

  • Jini D, Joseph B (2017) Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Sci 24:97–108

    Article  Google Scholar 

  • Kahveci H, Bilginer N, Diraz-Yildirim E, Kulak M, Yazar E, Kocacinar F, Karaman S (2021) Priming with salicylic acid, β-carotene and tryptophan modulates growth, phenolics and essential oil components of Ocimum basilicum L. grown under salinity. Sci Hortic 281:109964

    Article  CAS  Google Scholar 

  • Kamran M, Xie K, Sun J, Wang D, Shi C, Lu Y, Gu W, Xu P (2020) Modulation of growth performance and coordinated induction of ascorbate-glutathione and methylglyoxal detoxification systems by salicylic acid mitigates salt toxicity in choysum (Brassica parachinensis L.). Ecotoxicol Environ Saf 188:109877

    Article  CAS  PubMed  Google Scholar 

  • Karimi R, Ebrahimi M, Amerian M (2021) Abscisic acid mitigates NaCl toxicity in grapevine by influencing phytochemical compounds and mineral nutrients in leaves. Sci Hortic 288:110336

    Article  CAS  Google Scholar 

  • Kaya C, Higgs D, Ashraf M, Alyemeni MN, Ahmad P (2020) Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination. Physiol Plant 168:256–277

    CAS  PubMed  Google Scholar 

  • Keshavarzi M (2021) An overview of ecological anatomy of poaceae halophytes from iran handbook of halophytes: from molecules to ecosystems towards biosaline agriculture 1035–1062.

  • Kim HJ, Chen F, Wang X, Choi JH (2006) Effect of methyl jasmonate on phenolics, isothiocyanate, and metabolic enzymes in radish sprout (Raphanus sativus L.). J Agric Food Chem 54:7263–7269

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Mun BG, Khan AL, Waqas M, Kim HH, Shahzad R, Imran M, Yun BW, Lee IJ (2018) Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions. PLoS ONE 13:e0192650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koo YM, Heo AY, Choi HW (2020) Salicylic acid as a safe plant protector and growth regulator. Plant Pathol J 36:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K (2018) Advances and current challenges in calcium signaling. New Phytol 218:414–431

    Article  PubMed  Google Scholar 

  • Kumar A, Lata C, Kumar P, Devi R, Singh K, Krishnamurthy SL, Kulshreshtha N, Yadav RK, Sharma SK (2016) Salinity and drought induced changes in gas exchange attributes and chlorophyll fluorescence characteristics of rice (Oryza sativa) varieties. Ind J Agric Sci 86:718–726

    CAS  Google Scholar 

  • Lamaison J, Carnet A (1990) Contents in main flavonoid compounds of Crataegus monogyna Jacq. and Crataegus laevigata (Poiret) DC flowers at different development stages. Pharm Acta Helv 65:315–320

    CAS  Google Scholar 

  • Lamnai K, Anaya F, Fghire R, Zine H, Wahbi S, Loutfi K (2021) Impact of exogenous application of salicylic acid on growth, water status and antioxidant enzyme activity of strawberry plants (Fragaria vesca L) under salt stress conditions. Gesunde Pflanz 1–14.

  • Li Q, Xiang C, Xu L, Cui J, Fu S, Chen B, Yang S, Wang P, Xie Y, Wei M, Wang Z (2020) SMRT sequencing of a full-length transcriptome reveals transcript variants involved in C18 unsaturated fatty acid biosynthesis and metabolism pathways at chilling temperature in Pennisetum giganteum. BMC Genomics 21:1–14

    Google Scholar 

  • Li T, Hu Y, Du X, Tang H, Shen C, Wu J (2014) Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PLoS ONE 9:e109492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma X, Zheng J, Zhang X, Hu Q, Qian R (2017) Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Front Plant Sci 8:600

    Article  PubMed  PubMed Central  Google Scholar 

  • Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3:30

    Article  Google Scholar 

  • Mallahi T, Saharkhiz MJ, Javanmardi J (2018) Salicylic acid changes morpho-physiological attributes of feverfew (Tanacetum parthenium L.) under salinity stress. Acta Ecol Sin 38:351–355

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Menhas S, Yang X, Hayat K, Aftab T, Bundschuh J, Arnao MB, Zhou Y, Zhou P (2021) Exogenous melatonin enhances Cd tolerance and phytoremediation efficiency by ameliorating cd-induced stress in oilseed crops: a review. J Plant Growth Regul 1–14.

  • Mimouni H, Wasti S, Manaa A, Gharbi E, Chalh A, Vandoorne B, Lutts S, Ahmed HB (2016) Does salicylic acid (SA) improve tolerance to salt stress in plants? A study of SA effects on tomato plant growth, water dynamics, photosynthesis, and biochemical parameters. OMICS 20:180–190. https://doi.org/10.1089/omi.2015.0161

    Article  CAS  PubMed  Google Scholar 

  • Mir MA, John R, Alyemeni MN, Alam P, Ahmad P (2018) Jasmonic acid ameliorates alkaline stress by improving growth performance, ascorbate glutathione cycle and glyoxylase system in maize seedlings. Sci Rep 8:1–13

    Article  Google Scholar 

  • Miranda RdS, Mesquita RO, Costa JH, Alvarez-Pizarro JC, Prisco JT, Gomes-Filho E (2017) Integrative control between proton pumps and SOS1 antiporters in roots is crucial for maintaining low Na+ accumulation and salt tolerance in ammonium-supplied Sorghum bicolor. Plant Cell Physiol 58:522–536

    Article  PubMed  CAS  Google Scholar 

  • Misra N, Rahul M, Ajiboye M, Kafayat Y, Lateefat Y (2014) Salicylic acid alters antioxidant and phenolics metabolism in Catharanthus roseus grown under salinity stress. Afr J Tradit Complement Altern Med 11:118–125

    Article  PubMed  PubMed Central  Google Scholar 

  • Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD (2016) Physiological responses of the halophyte Sesuvium portulacastrum to salt stress and their relevance for saline soil bio-reclamation. Flora 224:96–105

    Article  Google Scholar 

  • Nadarajah K, Abdul Hamid NW, Abdul Rahman NSN (2021) SA-mediated regulation and control of abiotic stress tolerance in rice. Int J Mol Sci 22:5591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahar K, Hasanuzzaman M, Rahman A, Alam M, Mahmud J-A, Suzuki T, Fujita M (2016) Polyamines confer salt tolerance in mung bean (Vigna radiata L.) by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense, and methylglyoxal detoxification systems. Front Plant Sci 7:1104

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawaz M, Ashraf MY, Khan A, Nawaz F (2021) Salicylic acid–and ascorbic acid–induced salt tolerance in mung bean (Vigna radiata (L.) Wilczek) accompanied by oxidative defense mechanisms. J Plant Nutr Soil Sci 1–15.

  • Nephali L, Piater LA, Dubery IA, Patterson V, Huyser J, Burgess K, Tugizimana F (2020) Biostimulants for plant growth and mitigation of abiotic stresses: a metabolomics perspective. Metabolites 10:505

    Article  CAS  PubMed Central  Google Scholar 

  • Nieves-Cordones M, Ródenas R, Lara A, Martínez V, Rubio F (2019) The combination of K+ deficiency with other environmental stresses: what is the outcome? Physiol Plant 165:264–276

    Article  CAS  PubMed  Google Scholar 

  • Pirasteh-Anosheh H, Ranjbar G, Hasanuzzaman M, Khanna K, Bhardwaj R, Ahmad P (2021) Salicylic acid-mediated regulation of morpho-physiological and yield attributes of wheat and barley plants in deferring salinity stress. J Plant Growth Regul 1–13.

  • Prakash V, Singh VP, Tripathi DK, Sharma S, Corpas FJ (2021) Nitric oxide (NO) and salicylic acid (SA): a framework for their relationship in plant development under abiotic stress. Plant Biol 23:39–49

    Article  CAS  PubMed  Google Scholar 

  • Rahman SU, Khalid M, Kayani S-I, Tang K (2020) The ameliorative effects of exogenous inoculation of Piriformospora indica on molecular, biochemical and physiological parameters of Artemisia annua L. under arsenic stress condition. Ecotoxicol Environ Saf 206:111202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rattan A, Kapoor D, Kapoor N, Bhardwaj R, Sharma A (2020) Brassinosteroids regulate functional components of antioxidative defense system in salt stressed maize seedlings. J Plant Growth Regul 39.

  • Riedel H, Akumo DN, Saw NMMT, Kütük O, Neubauer P, Smetanska I (2012) Elicitation and precursor feeding influence phenolic acids composition in Vitis vinifera suspension culture. Afr J Biotechnol 11:3000–3008

    CAS  Google Scholar 

  • Romero-Romero JL, Inostroza-Blancheteau C, Reyes-Díaz M, Matte JP, Aquea F, Espinoza C, Gil PM, Arce-Johnson P (2020) Increased drought and salinity tolerance in Citrus aurantifolia (Mexican lemon) plants overexpressing arabidopsis CBF3 gene. J Plant Nutr Soil Sci 20:244–252

    Article  CAS  Google Scholar 

  • Rubio F, Nieves-Cordones M, Horie T, Shabala S (2020) Doing ‘business as usual’comes with a cost: evaluating energy cost of maintaining plant intracellular K+ homeostasis under saline conditions. New Phytol 225:1097–1104

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24:2452

    Article  CAS  PubMed Central  Google Scholar 

  • Sharma A, Sidhu GP, Araniti F, Bali AS, Shahzad B, Tripathi DK, Brestic M, Skalicky M, Landi M (2020) The role of salicylic acid in plants exposed to heavy metals. Molecules 25:540

    Article  CAS  PubMed Central  Google Scholar 

  • Shokat S, Großkinsky DK (2019) Tackling salinity in sustainable agriculture—what developing countries may learn from approaches of the developed world. Sustainability 11:4558

    Article  CAS  Google Scholar 

  • Simić A, Manojlović D, Šegan D, Todorović M (2007) Electrochemical behavior and antioxidant and prooxidant activity of natural phenolics. Molecules 12:2327–2340

    Article  PubMed  PubMed Central  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) [14] analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Skliros D, Kalloniati C, Karalias G, Skaracis GN, Rennenberg H, Flemetakis E (2018) Global metabolomics analysis reveals distinctive tolerance mechanisms in different plant organs of lentil (Lens culinaris) upon salinity stress. Plant Soil 429:451–468

    Article  CAS  Google Scholar 

  • Sohag AA, Tahjib-Ul-Arif M, Brestic M, Afrin S, Sakil MA, Hossain MT, Hossain MA, Hossain MA (2020) Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. Plant Soil Environ 66:7–13

    Article  Google Scholar 

  • Song SY, Chen Y, Chen J, Dai XY, Zhang WH (2011) Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 234(2):331–345

    Article  CAS  PubMed  Google Scholar 

  • Souri MK, Tohidloo G (2019) Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chem Biol Technol Agric 6:1–7

    Article  Google Scholar 

  • Teakle NL, Tyerman SD (2010) Mechanisms of Cl- transport contributing to salt tolerance. Plant Cell Environ 33:566–589

    Article  CAS  PubMed  Google Scholar 

  • Torun H, Novák O, Mikulík J, Pěnčík A, Strnad M, Ayaz FA (2020) Timing-dependent effects of salicylic acid treatment on phytohormonal changes, ROS regulation, and antioxidant defense in salinized barley (Hordeum vulgare L.). Sci Rep 10:1–17

    Article  CAS  Google Scholar 

  • Valifard M, Mohsenzadeh S, Kholdebarin B, Rowshan V (2014) Effects of salt stress on volatile compounds, total phenolic content and antioxidant activities of Salvia mirzayanii. S Afr J Bot 93:92–97

    Article  CAS  Google Scholar 

  • Vergun O, Rakhmetov D, Shymanska O, Fishchenko V, Ivanišová E, Brindza J (2019) Leaves extracts of selected crops as potential source of antioxidants. Plant Introduction 84:82–88

    Google Scholar 

  • Wang Y, Diao P, Kong L, Yu R, Zhang M, Zuo T, Fan Y, Niu Y, Yan F, Wuriyanghan H (2020a) Ethylene enhances seed germination and seedling growth under salinity by reducing oxidative stress and promoting chlorophyll content via ETR2 pathway. Front Plant Sci 11:1066

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Gong X, Liu W, Kong L, Si X, Guo S, Sun J (2020b) Gibberellin mediates spermidine-induced salt tolerance and the expression of GT-3b in cucumber. Plant Physiol Biochem 152:147–156

    Article  PubMed  CAS  Google Scholar 

  • Wiciarz M, Niewiadomska E, Kruk J (2018) Effects of salt stress on low molecular antioxidants and redox state of plastoquinone and P700 in Arabidopsis thaliana (glycophyte) and Eutrema salsugineum (halophyte). Photosynthetica 56:811–819

    Article  CAS  Google Scholar 

  • Yadav T, Kumar A, Yadav R, Yadav G, Kumar R, Kushwaha M (2020) Salicylic acid and thiourea mitigate the salinity and drought stress on physiological traits governing yield in pearl millet-wheat. Saudi J Biol Sci 27:2010–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G (2020) How plant hormones mediate salt stress responses. Trends Plant Sci 25:1117–1130

    Article  CAS  PubMed  Google Scholar 

  • Yücel NC, Heybet E (2016) Salicylic acid and calcium treatments improves wheat vigor, lipids and phenolics under high salinity. Acta Chim Slov 63:738–746

    Article  CAS  Google Scholar 

  • Zaid A, Mohammad F, Wani SH, Siddique KM (2019) Salicylic acid enhances nickel stress tolerance by up-regulating antioxidant defense and glyoxalase systems in mustard plants. Ecotoxicol Environ Saf 180:575–587

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Tang N, Huang L, Zhao Y, Tang X, Wang K (2018) Effects of salt stress on plant growth, antioxidant capacity, glandular trichome density, and volatile exudates of Schizonepeta tenuifolia Briq. Int J Mol Sci 19:252

    Article  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to all the anonymous reviewers, research team, and funding agencies.

Funding

This work was supported by the National Key Research and Development Program [2016YFD0800807], National Nature Science Foundations of China [31702003, 31902105], Young Elite Scientists Sponsorship Program by CAST [2017QNRC001], Project funded by China Postdoctoral Science Foundation [2019M651505], Sponsored by “Chenguang Program” supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission [17CG07], Shanghai Agriculture Science and Technology Development Project [2018-4-13], Shanghai Municipal Science and Technology Commission Project [20dz1204804].

Author information

Authors and Affiliations

Authors

Contributions

KH: investigation, data curation, formal and software analysis, writing—original draft. YZ: methodology, project administration. SM: data curation, writing—review and editing. SH, JB, TA: writing—review and editing. PZ: conceptualization, funding acquisition.

Corresponding author

Correspondence to Pei Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Handling Editor: Tibor Janda.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 658 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, K., Zhou, Y., Menhas, S. et al. Salicylic Acid Confers Salt Tolerance in Giant Juncao Through Modulation of Redox Homeostasis, Ionic Flux, and Bioactive Compounds: An Ionomics and Metabolomic Perspective of Induced Tolerance Responses. J Plant Growth Regul 41, 1999–2019 (2022). https://doi.org/10.1007/s00344-022-10581-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10581-w

Keywords

Navigation