Skip to main content
Log in

Nitric Oxide-Mediated Enhancement in Photosynthetic Efficiency, Ion Uptake and Carbohydrate Metabolism that Boosts Overall Photosynthetic Machinery in Mustard Plants

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) acts as a gaseous diffusible plant growth regulator. It plays an important role in growth and development of plants. Therefore, in present study mustard plants were sprayed with different concentrations of sodium nitroprusside (0, 10–4 M, 10–5 M and 10–6 M), a donor of NO, at 25 days after sowing to assess different physiological parameters. The results indicate that foliar spray of SNP upregulate chlorophyll content, chlorophyll fluorescence along with gaseous exchange parameters which further boost overall photosynthetic efficiency. A gradual increase in carbon metabolism (total reducing sugars, total carbohydrate content, glucose, fructose, sucrose and starch content) was also observed in SNP-treated plants as compared to control. Nutrient status (carbon, nitrogen, phosphorus, sulfur, potassium and magnesium) of leaves also shows a significant increase. The activity of various enzymes associated with nitrogen metabolism, CO2/HCO3 homeostasis, glycolysis, Calvin cycle and Krebs cycle (nitrate reductase, carbonic anhydrase, hexokinase, rubisco, fumarase and succinate dehydrogenase) were also increased in the presence of SNP. It was also reported that O2, H2O2 and MDA were decreased in SNP-treated samples. SNP application also upregulate antioxidative defense system by increasing the activity of antioxidant enzymes, i.e., CAT, POX and SOD. Thus, it can be concluded from the present observation that SNP proved beneficial and alter most of the parameters which ultimately improve photosynthetic efficiency in mustard plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

NO:

Nitric oxide

SNP:

Sodium nitroprusside

g s :

Stomatal conductance

C i :

Internal CO2 concentration

E :

Transpiration rate

P N :

Net photosynthetic rate

F v/F m :

Maximal PSII efficiency

ɸPSII:

Actual PSII efficiency

qP:

Photochemical quenching

NPQ:

Non-photochemical quenching

ETR:

Electron transport rate

H2O2 :

Hydrogen peroxide

O2 :

Superoxide

MDA:

Malondialdehyde

CAT:

Catalase

POX:

Peroxidase

SOD:

Superoxide dismutase

SNP:

Sodium nitroprusside

DAS:

Days after sowing

IRGA:

Infrared gas analyzer

NR:

Nitrate reductase

CA:

Carbonic anhydrase

EDTA:

Ethylene diamine tetraacetic acid

PVP:

Polyvinyl pyrrolidone

PMSF:

Phenyl methyl sulfonyl fluoride

TEMED:

Tetramethyl ethylene diamine

DTT:

Dithiothreitol

RuBP:

Ribulose-1,5-bisphosphate

DAB:

3,3-Diaminobenzidine

NBT:

Nitroblue tetrazolium

TCA:

Trichloroacetic acid

TBA:

Thiobarbituric acid

DNS:

3,5-Dinitrosalicylic acid

PI:

Propidium iodide

LSD:

Least significant difference

ANOVA:

Analysis of variance

.OH:

Hydroxyl radical

C:

Carbon

Mg:

Magnesium

K:

Potassium

S:

Sulfur

P:

Phosphorus

N:

Nitrogen

References

  • Adamu TA, Mun BG, Lee SU, Hussain A, Yun BW (2018) Exogenously applied nitric oxide enhances salt tolerance in rice (Oryza sativa L.) at seedling stage. Agron J 8:1–15

    Google Scholar 

  • Ahmad P, Ashraf M, Hakeem KR, Azooz MM, Rasool S, Chandna R, Akram NA (2014) Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea. J Plant Int 9:1–9

    CAS  Google Scholar 

  • Ahmad P, Latef AAA, Hashem A, Abd Allah EF, Gucel S, Tran LS (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:1–11

    Google Scholar 

  • Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Alam P (2018) Exogenous application of nitric oxide modulates osmolytes metabolism, antioxidants, enzymes of ascorbate-glutathione cycle and promotes growth under cadmium stress in tomato. Protoplasma 255:79–93

    CAS  PubMed  Google Scholar 

  • Antoniou C, Filippou P, Mylona P, Fasoula D, Ioannides I, Polidoros A, Fotopoulos V (2013) Developmental stage-and concentration-specific sodium nitroprusside application results in nitrate reductase regulation and the modification of nitrate metabolism in leaves of Medicago truncatula plants. Plant Signal Behav 8:e25479

    PubMed  PubMed Central  Google Scholar 

  • Arc E, Galland M, Godin B, Cueff G, Rajjou L (2013) Nitric oxide implication in the control of seed dormancy and germination. Front Plant Sci 4:346

    PubMed  PubMed Central  Google Scholar 

  • Arora D, Bhatla SC (2015) Nitric oxide triggers a concentration-dependent differential modulation of superoxide dismutase (FeSOD and Cu/ZnSOD) activity in sunflower seedling roots and cotyledons as an early and long distance signaling response to NaCl stress. Plant Signal Behav 10:e1071753

    PubMed  PubMed Central  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    CAS  PubMed  Google Scholar 

  • Ashraf MPJC, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166(1):3–16

    CAS  Google Scholar 

  • Ashwell G (1957) Colorimetric analysis of sugar. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic Press, New York

    Google Scholar 

  • Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Biol 45:369–392

    CAS  Google Scholar 

  • Balotf S, Islam S, Kavoosi G, Kholdebarin B, Juhasz A, Ma W (2018) How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels. PLoS ONE 13:e0190269

    PubMed  PubMed Central  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and assay applicable to acrylamide gels. Anal Biochem 44:276–287

    CAS  PubMed  Google Scholar 

  • Begara-Morales JC, Sanchez-Calvo B, Chaki M, Valderrama C, Mata-Perez C, Padilla MN, Corpas FJ, Barroso JB (2016) Antioxidant systems are regulated by nitric oxide-mediated post-translational modifications (NO-PTMs). Front Plant Sci 7:152

    PubMed  PubMed Central  Google Scholar 

  • Bergmeyer HU, Gawehn K, Grassi M (1974) In: Bergmayer HU (ed) In methods of enzymatic analysis. Academic Press, New York

    Google Scholar 

  • Bergmeyer HU, Grassi M, Walter HE (1983) In: Bergmeyer HU (ed) In methods of enzymatic analysis. Verlag Chemie, Deerfield Beach, pp 222–223

    Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalase and peroxidase. Methods Enzymol 2:764–775

    Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    CAS  PubMed  Google Scholar 

  • Del Rio LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837

    PubMed  Google Scholar 

  • DiMario RJ, Machingura MC, Waldrop GL, Moroney JV (2018) The many types of carbonic anhydrase in photosynthetic organisms. Plant Sci 268:11–17

    CAS  PubMed  Google Scholar 

  • Dong YJ, Jinc SS, Liu S, Xu LL, Kong J (2014) Effects of exogenous nitric oxide on growth of cotton seedlings under NaCl stress. J Soil Sci Plant Nutr 14:1–13

    CAS  Google Scholar 

  • Dong Y, Chen W, Xu L, Kong J, Liu S, He Z (2016) Nitric oxide can induce tolerance to oxidative stress of peanut seedlings under cadmium toxicity. Plant Growth Regul 79(1):19–28

    CAS  Google Scholar 

  • Dong Y, Chen W, Zhuge Y, Song Y, Hu G, Wan Y, Liu F, Li X (2018) Effect of application of exogenous nitric oxide at different critical growth stages in alleviating Fe deficiency chlorosis of peanut growing in calcareous soil. J Plant Nutr 41:867–887

    CAS  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Calorimetric method for determination of sugars and related substance. Anal Chem 28:350–356

    CAS  Google Scholar 

  • Dwivedi RS, Randhawa NS (1974) Evaluation of a rapid test for the hidden hunger of zinc in plants. Plant Soil 40:445–451

    CAS  Google Scholar 

  • Esim N, Atici OS (2015) Effects of nitric oxide and salicylic acid on chilling-induced oxidative stress in wheat (Triticum aestivum). Front Life Sci 8:124–130

    CAS  Google Scholar 

  • Esmail NY, Hashem HA, Hassanein AA (2018) Effect of treatment with different concentrations of sodium nitroprusside on survival, germination, growth, photosynthetic pigments and endogenous nitric oxide content of Lupines termis L. plants. Acta Sci Agric 2(5):48–52

    Google Scholar 

  • Fan H, Du C, Xu Y, Wu X (2014) Exogenous nitric oxide improves chilling tolerance of Chinese cabbage seedlings by affecting antioxidant enzymes in leaves. Hort Environ Biotechnol 55:159–165

    CAS  Google Scholar 

  • Fancy NN, Bahlmann AK, Laoke GJ (2017) Nitric oxide function in plant abiotic stress. Plant Cell Environ 40:462–472

    CAS  PubMed  Google Scholar 

  • Farooq M, Wahid A, Lee DJ (2009) Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol Plant 31:937–945

    CAS  Google Scholar 

  • Fei D, Xiu-feng W, Qing-hua S, Mei-ling W, Feng-juan Y, Qing-hai G (2008) Exogenous nitric oxide alleviated the inhibition of photosynthesis and antioxidant enzyme activities in iron-deficient Chinese cabbage (Brassica chinensis L.). ASC 7:168–179

    Google Scholar 

  • Filippou P, Antoniou C, Fotopoulos V (2013) The nitric oxide donor sodium nitroprusside regulates polyamine and proline metabolism in leaves of Medicago truncatula plants. Free Radic Biol Med 56:172–183

    CAS  PubMed  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    CAS  PubMed  Google Scholar 

  • Gan L, Wu X, Zhong Y (2015) Exogenously applied nitric oxide enhances the drought tolerance in hulless barley. Plant Prod Sci 18:52–56

    CAS  Google Scholar 

  • Gayatri G, Agurla S, Raghavendra AS (2013) Nitric oxide in guard cells as an important secondary messenger during stomatal closure. Front Plant Sci 4:425

    PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  • Gichner T, Patková Z, Száková J, Žnidar I, Mukherjee A (2008) DNA damage in potato plants induced by cadmium, ethyl methanesulphonate and γ-rays. Environ Exp Bot 62(2):113–119

    CAS  Google Scholar 

  • Gliozeris S, Tamosiunas A, Stuopyte L (2007) Effect of some growth regulators on chlorophyll fluorescence in Viola x wittrockiana ‘Wesel Ice’. Biologija 53:24–27

    CAS  Google Scholar 

  • Graziano M, Beligni MV, Lamattina L (2002) Nitric oxide improves internal iron availability in plants. Plant Physiol 130:1852–1859

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gruszka D (2013) The brassinosteroid signaling pathway-new key players and interconnections with other signaling networks crucial for plant development and stress tolerance. Int J Mol Sci 14:8740–8774

    PubMed  PubMed Central  Google Scholar 

  • Habib N, Ashraf M, Shahbaz M (2013) Effect of exogenously applied nitric oxide on some key physiological attributes of rice (Oryza sativa L.) Plants under salt stress. Pak J Bot 45:1563–1569

    CAS  Google Scholar 

  • Hailemichael G, Catalina A, Gonzalez MR, Martin P (2016) Relationships between water status, leaf chlorophyll content and photosynthetic performance in Tempranillo vineyards. S Afr J Enol Vitic 37:149–156

    CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Fujita M (2012) Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat (Triticum aestivum L.) seedlings by modulating the antioxidant defense and glyoxylase system. AJCS 6:1314–1323

    CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Hossain MS, Anee TI, Parvin K, Fujita M (2017) Nitric oxide pretreatment enhances antioxidant defense and glyoxalase systems to confer PEG-induced oxidative stress in rapeseed. J Plant Interact 12:323–331

    CAS  Google Scholar 

  • Hayat S, Yadav S, Ali B, Ahmad A (2010) Interactive effect of nitric oxide and brassinosteroids on photosynthesis and the antioxidant system of Lycopersicon esculentum. Russ J Plant Physiol 57:212–221

    CAS  Google Scholar 

  • Hayat S, Yadav S, Wani AS, Irfan M, Ahmad A (2011) Nitric oxide effects on photosynthetic rate, growth and antioxidant activity in tomato. Int J Veg Sci 17:333–348

    Google Scholar 

  • Hayat S, Yadav S, Wani AS, Irfan M, Alyemeni A, Ahmad A (2012) Impact of sodium nitroprusside on nitrate reductase, proline content and antioxidant system in tomato under salinity stress. Hort Environ Biotechnol 53:362–367

    CAS  Google Scholar 

  • Hayat S, Yadav S, Alyemeni MN, Irfan M, Wani AS, Ahmad A (2013) Alleviation of salinity stress with sodium nitroprusside in tomato. Int J Veg Sci 19:164–176

    Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  PubMed  Google Scholar 

  • Hu X, Neill SJ, Tang Z, Cai W (2005) Nitric oxide mediates gravitropic bending in soyabean roots. Plant Physiol 137:663–670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hung KT, Kao CH (2004) Nitric oxide acts as an antioxidant and delays methyl jasmonate-induced senescence of rice leaves. J Plant Physiol 161:43–52

    CAS  PubMed  Google Scholar 

  • Jaworski EG (1971) Nitrate reductase assay in intact plant tissues. Biochem Biophys Res Commun 43:1274–1279

    CAS  PubMed  Google Scholar 

  • Karami A, Sepehr A (2018) Nano titanium dioxide and nitrogen dioxide alleviate salt induced changes in seedling growth, physiological and photosynthesis attributes in barley. Zemdirbyste 105:123–132

    Google Scholar 

  • Kaur G, Singh HP, Batish DR, Mahajan P, Kohli RK, Rishi V (2015) Exogenous nitric oxide (NO) interferes with lead (Pb)-induced toxicity by detoxifying reactive oxygen species in hydrophonically grown wheat (Triticum aestivum) roots. PLoS ONE 10:e0138713

    PubMed  PubMed Central  Google Scholar 

  • Kaur N, Sharma I, Kirat K, Pati PK (2016) Detection of reactive oxygen species in Oryza sativa L. (rice). Bio Protoc 6:1–9

    Google Scholar 

  • Kaya C, Ashraf M, Alyemeni MN, Ahmad P (2019) Responses of nitric oxide and hydrogen sulfide in regulating oxidative defence system in wheat plants grown under cadmium stress. Physiol Plantarum. 168:345–360

    Google Scholar 

  • Khan EA, Misra M, Sharma P, Misra AN (2017) Effects of exogenous nitric oxide on protein, proline, MDA contents and antioxidative system in pea seedlings (Pisum sativum L.). Res J Pharm Tech 10:3137–3142

    Google Scholar 

  • Khoshbakht D, Asghari MR, Haghighi M (2018) Effects of foliar applications of nitric oxide and spermidine on chlorophyll florescence, photosynthesis and antioxidant enzyme activities of citrus seedlings under salinity stress. Photosynthetica 56:1313–1325

    CAS  Google Scholar 

  • Krall JP, Edwards GE (1992) Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plant 86:180–187

    CAS  Google Scholar 

  • Kumar RS, Shen CH, Wu PY, Kumar SS, Hua MS, Yeh KW (2016) Nitric oxide participates in plant flowering repression by ascorbate. Sci Rep 6:1–13

    Google Scholar 

  • Kun E, Abood LG (1949) Calorimetric estimation of succinate dehydrogenase by TCC. Sci Rep 109:144–146

    CAS  Google Scholar 

  • Laxalt AM, Garcia-Mata C, Lamattina L (2016) The dual role of nitric oxide in guard cells: promoting and attenuating the ABA and phospholipid-derived signals leading to the stomatal closure. Front Plant Sci 7:476. https://doi.org/10.3389/fpls.2016.00476

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Ma XG, He JM (2013) Stomatal bioassay in Arabidopsis leaves. Bio Protoc 3:1–4

    Google Scholar 

  • Liang L, Deng Y, Sun X, Jia X, Su J (2018) Exogenous nitric oxide pretreatment enhances chilling tolerance of Anthurium. J Am Soc Hortic Sci 143:3–13

    CAS  Google Scholar 

  • Liu X, Wang L, Liu L, Guo Y, Ren H (2011) Alleviating effect of exogenous nitric oxide in cucumber seedling against chilling stress. AJB 10:4380–4386

    Google Scholar 

  • Liu S, Dong YJ, Xu LL, Kong J, Bai XJ (2013) Roles of exogenous nitric oxide in regulating ionic equilibrium and moderating oxidative stress in cotton seedlings during salt stress. J Soil Sci Plant Nutr 13:929–941

    Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659–668

    CAS  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428

    CAS  Google Scholar 

  • Mostofa MG, Seraj ZI, Fujita M (2014) Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings. Protoplasma 251:1373–1386

    CAS  PubMed  Google Scholar 

  • Mostofa MG, Fujita M, Tran LSP (2015) Nitric oxide mediates hydrogen peroxide-and salicylic acid-induced salt tolerance in rice (Oryza sativa L) seedlings. Plant Growth Regul 77(3):265–277

    CAS  Google Scholar 

  • Mur LAJ, Hebelstrup KH, Gupta KJ (2013) Striking a balance: does nitrate uptake and metabolism regulate both NO generation and scavenging? Front Plant Sci 4:288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    CAS  PubMed  Google Scholar 

  • Parankusam S, Adimulam SS, Bhatnagar-Mathur P, Sharma KK (2017) Nitric oxide (NO) in plant heat stress tolerance: current knowledge and perspectives. Front Plant Sci 8:1582

    PubMed  PubMed Central  Google Scholar 

  • Patterson BD, Macrae EA, Ferguson IB (1984) Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem 139:487–492

    CAS  PubMed  Google Scholar 

  • Pompella A, Maellaro E, Casini AF, Comporti M (1987) Histochemical detection of lipid peroxidation in the liver of bromobenzene-poisoned mice. Am J Pathol 129:295–301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pospisil P (2016) Production of reactive oxygen species by photosystem II as a response’ to light and temperature stress. Front Plant Sci 7:1–12

    Google Scholar 

  • Prabhu BM, Ramteke PW, Shukla PK, Mishra P, Attri A, Singh B, Pagire G (2018) Evaluation of response of exogenous nitric oxide on photosynthetic enzymes and pigments of C3 and C4 plants grown under drought stress. J Pharmacogn Phytochem 7:2606–2612

    CAS  Google Scholar 

  • Ramadan AA, Abd Elhamid EM, Sadak MS (2019) Comparative study for the effect of arginine and sodium nitroprusside on sunflower plants grown under salinity stress conditions. Bull Natl Res Centre 43(1):118

    Google Scholar 

  • Rattan A, Kapoor N, Kapoor D, Bhardwaj R (2017) Salinity induced damage overwhelmed by the treatment of brassinosteroids in Zea mays seedlings. Adv Biores 8:87–102

    CAS  Google Scholar 

  • Ren Y, Wang W, He J, Zhang L, Wei Y, Yang M (2020) Nitric oxide alleviates salt stress in seed germination and early seedling growth of pakchoi (Brassica chinensis L.) by enhancing physiological and biochemical parameters. Ecotoxicol Environ Safety 187:109785

    CAS  PubMed  Google Scholar 

  • Roe JH (1934) A calorimetric method for the determination of fructose in blood and urine. J Biol Chem 107:15–22

    CAS  Google Scholar 

  • Ruban AV (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol 170:1903–1916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sadasivam S, Manickam A (1996) Biochemical methods. New Age International (p) Ltd Publisher, New Delhi, pp 179–186

    Google Scholar 

  • Sakihama Y, Murakami S, Yamasaki H (2003) Involvement of nitric oxide in the mechanism for stomatal opening in Vicia faba leaves. Biol Plant 46:117–119

    CAS  Google Scholar 

  • Saroj S, Parihar NN, Vitnor SS, Shukla PK (2018) Effect of sodium nitroprusside on paddy and maize under different levels of salt stress. J Pharmacogn Phytochem 7:266–270

    CAS  Google Scholar 

  • Seabra AB, Oliveira HC (2016) How nitric oxide donors can protect plants in changing environment: what we know so far and perspectives. AIMS Mol Sci 3:692–718

    CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012:1–26

    Google Scholar 

  • Sheokand S, Kumari A, Sawhney V (2008) Effect of nitric oxide and putrescine on antioxidative responses under NaCl stress in chickpea plants. Physiol Mol Biol Plant 14:355–362

    CAS  Google Scholar 

  • Sheokand S, Bhankar V, Sawhney V (2010) Ameliorative effect of exogenous nitric oxide on oxidative metabolism in NaCl treated chickpea plants. Braz J Plant Physiol 22:81–90

    Google Scholar 

  • Shi HT, Li RJ, Cai W, Lui W, Fu ZW, Lu YT (2012) In vivo role of nitric oxide in plant response to abiotic and biotic stress. Plant Signal Behav 7:437–439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui MH, Alamri SA, Al-Khaishany MY, Al-Qutami MA, Ali HM, Khan MN (2017) Sodium nitroprusside and indole acetic acid improve the tolerance of tomato plants to heat stress by protecting against DNA damage. J Plant Interact 12(1):177–186

    CAS  Google Scholar 

  • Siddiqui H, Ahmed KBM, Hayat S (2018) Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the performance of different components influencing the photosynthetic machinery in Brassica juncea L. Plant Physiol Biochem 129:198–212

    CAS  PubMed  Google Scholar 

  • Silveira NM, Frungillo L, Marcos FCC, Pelegrino MT, Miranda MT, Seabra AB, Salagado I, Machado EC, Ribieiro RV (2016) Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit. Planta 244:181–190

    CAS  PubMed  Google Scholar 

  • Simolinska B, Leszczynska J (2017) Photosynthetic pigments and peroxidase activity of Lepidium sativum L. during assisted Hg phytoextraction. Environ Sci Pollut Res 24:13384–13393

    Google Scholar 

  • Singh N, Luthra R (1988) Sucrose metabolism and essential oil accumulation during lemongrass (Cymbopogon flexuosus Stapf.) leaf development. Plant Sci 57:127–133

    CAS  Google Scholar 

  • Singh P, Shah K (2014) Evidences of reduced metal-uptake and membrane injury upon application of nitric oxide donor in cadmium stressed rice seedlings. Plant Physiol Biochem 83:180–184

    CAS  PubMed  Google Scholar 

  • Sivakumaran A, Akinyemi A, Mandon J, Cristescu SM, Hall M, Harren FJM, Mur AJ (2016) ABA suppresses Botrytis cinerea elicited NO production in tomato to influence H2O2 generation and increase host susceptibility. Front Plant Sci 7:1–12

    Google Scholar 

  • Strasburger E (1998) Lehrbuch der Botanik, 34th edn. Fischer, Stuttgart, p 310

    Google Scholar 

  • Sun H, Li J, Song W, Tao J, Huang S, Chen S, Hou M, Xu G, Zhang Y (2015) Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice. J Exp Bot 66:2449–2459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taiz L, Zeiger E (1998) Plant physiology, 2nd edn. Sinauer associates publishers, Sunderland, pp 109–110

    Google Scholar 

  • Takahashi M, Morikawa H (2014) Nitrogen dioxide accelerates flowering without changing the number of leaves at flowering in Arabidopsis thaliana. Plant Signal Behav 9:e970433

    PubMed  PubMed Central  Google Scholar 

  • Tan J, Zhao H, Hong J, Han Y, Li H, Zhao W (2008) Effects of exogenous nitric oxide on photosynthesis, antioxidant capacity and proline accumulation in wheat seedlings subjected to osmotic stress. World J Agric Sci 4:307–313

    Google Scholar 

  • Thimmaiah SK (1999) Standard methods of biochemical analysis. Kalyani Publishers, New Delhi

    Google Scholar 

  • Usuda H (1985) The activation state of ribulose 1,5-bisphosphate carboxylase in maize leaves in dark and light. Plant Cell Physiol 26:1455–1463

    CAS  Google Scholar 

  • Wang Q, Liang X, Dong Y, Xu L, Zhang X, Hou J, Fan Z (2013) Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass. Plant Growth Regul 69(1):11–20

    CAS  Google Scholar 

  • Wang P, Du Y, Hou Y, Zhao Y, Hsu C, Yuan F, Zhu X, Tao WA, Song CP, Zhu JK (2015) Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. PNAS 112:613–618

    CAS  PubMed  Google Scholar 

  • Whittaker A, Bochicchio A, Vazzana C, Lindsey G, Farrant J (2001) Changes in leaf hexokinase activity and metabolite level in response to drying in the desiccation-tolerant species Sporobolus stapfianus and Xerophyta viscosa. J Exp Bot 52:961–969

    CAS  PubMed  Google Scholar 

  • Wodala B, Deak Z, Vass I, Erdie L, Altorjay I, Horvath F (2008) In vivo target sites of nitric oxide in photosynthetic electron transport as studied by chlorophyll fluorescence in pea. Plant Physiol 146:1920–1927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woodbury W, Spencer AK, Stahmann MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44(1):301–305

    CAS  PubMed  Google Scholar 

  • Wu XX, Ding HD, Chen JL, Zhang HJ, Zhu WM (2010) Attenuation of salt-induced changes in photosynthesis by exogenous nitric oxide in tomato (Lycopersicon esculentum Mill. L.) seedlings. AJB 9:7837–7846

    CAS  Google Scholar 

  • Xiong J, An L, Lu H, Zhu C (2009) Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 230:755–765

    CAS  PubMed  Google Scholar 

  • Xu L, Dong Y, Fan Z, Kong J, Liu S, Bai X (2014) Effects of the application of exogenous NO at different growth stage on the physiological characteristics of peanut grown in Cd-contaminated soil. J Plant Int 9:285–296

    CAS  Google Scholar 

  • Zandalinas SI, Balfagon D, Arbona V, Gomez-Cadenas A (2017) Modulation of antioxidant defense system is associated with combined drought and heat stress tolerance in Citrus. Front Plant Sci 8:953

    PubMed  PubMed Central  Google Scholar 

  • Zhang H, Li YH, Hu LY, Wang SH, Zhang FQ, Hu KD (2008) Effects of exogenous nitric oxide donor on antioxidant metabolism in wheat leaves under aluminum stress. Russ J Plant Physiol 55:469–474

    CAS  Google Scholar 

  • Zhang L, Li X, Li X, Wei Z, Han M, Zhang L, Li B (2016) Exogenous nitric oxide protects against drought-induced oxidative stress in Malus rootstocks. Turk J Bot 40:17–27

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamsul Hayat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sami, F., Siddiqui, H. & Hayat, S. Nitric Oxide-Mediated Enhancement in Photosynthetic Efficiency, Ion Uptake and Carbohydrate Metabolism that Boosts Overall Photosynthetic Machinery in Mustard Plants. J Plant Growth Regul 40, 1088–1110 (2021). https://doi.org/10.1007/s00344-020-10166-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-020-10166-5

Keywords

Navigation