Skip to main content

Advertisement

Log in

Utilizing the Allelopathic Potential of Brassica Species for Sustainable Crop Production: A Review

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Sustainable crop production under changing climate is crucial to feed the increasing population of the world. Efforts are underway to discover novel strategies to ensure global food security. Allelopathy is one such phenomenon that can help in this regard. It is a direct or indirect and positive or negative effect of plant species on other plant species and microorganisms, through the release of secondary metabolites known as allelochemicals. Brassica species are well known for their allelopathic potential as most of them endogenously produce potent allelochemicals such as glucosinolates, allyl isothiocyanates, and brassinosteroids. These allelochemicals are highly phytotoxic to target species when released at high concentrations and, therefore, affect their growth and development. This review illustrates the potential role of Brassica allelopathy for crop production in modern agriculture. Allelopathic potential of Brassica species can be utilized for weed management by using them as cover crops, companion crops, and intercrops, for mulching and residue incorporation, or simply by including them in crop rotations. Similarly, the expression of allelochemicals from these species have great value in the management of crop pests and diseases, and abiotic stresses. Most of these allelochemicals can also act as crop growth promoters when released or applied at low concentrations. Although the use of chemical herbicides, pesticides, and synthetic growth regulators is currently inevitable for crop production, the use of ecological options like allelopathy may help in achieving global food security sustainably. Exploring the potential of Brassica allelopathy could be promising in achieving higher productivity without compromising the environmental safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali B, Hasan SA, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Wilczek L (2008) A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Env Exp Bot 62(2):153–159. https://doi.org/10.1016/j.envexpbot.2007.07.014

    Article  CAS  Google Scholar 

  • Al-Sherif E, Hegazy AK, Gomaa NH, Hassan MO (2013) Allelopathic effect of black mustard tissues and root exudates on some crops and weeds. Planta Daninha 31(1):11–19

    Article  Google Scholar 

  • Al-Turki AI, Dick WA (2003) Myrosinase activity in soil. Soil Sci Soc Am J 67:139–145. https://doi.org/10.2136/sssaj2003.1390

    Article  CAS  Google Scholar 

  • Anaya AL, Waller GR, Owuor PO, Friedman J, Chou CH, Suzuki T, Arroyo-Estrada JF, Cruz-Ortega R (2002) The role of caffeine in the production decline due to auto toxicity in coffee and tea production. In: Reigosa MJ, Pedrol N (eds) Allelopathy from molecules to ecosystems. Science Publishers Inc., Enfiled, pp 71–92

    Google Scholar 

  • Anjum SA, Wang LC, Farooq M, Hussain M, Xue LL, Zou CM (2011) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 195:420–426

    Google Scholar 

  • Anuradha S (2002) Alleviating influence of brassinolide on salinity stress induced inhibition of germination and seedling growth of rice. Indian J Plant Physiol 7(4):384–387

    Google Scholar 

  • Anuradha S, Rao SSR (2007) Effect of brassinosteroids on radish (Raphanus sativus L.) seedlings growing under cadmium stress. Plant Soil Environ 53:465–472

    Article  CAS  Google Scholar 

  • Anuradha M, Nageswararao K, Prabhakarababu D (2003) Effect of commercial formulation of brassinolide on growth, yield and quality of fluecured virginia tobacco. Indian J Plant Physiol 8(1):93–95

    CAS  Google Scholar 

  • Avato P, D’Addabbo T, Leonetti P, Argentieri MP (2013) Nematicidal potential of Brassicaceae. Phytochem Rev 12:791–802

    Article  CAS  Google Scholar 

  • Awan FK, Rasheed M, Ashraf M, Khurshid MY (2012) Efficacy of Brassica sorghum and sunflower aqueous extracts to control wheat weeds under rainfed conditions of Pothwar, Pakistan. J Anim Plant Sci 22(3):715–721

    Google Scholar 

  • Bagger CL, Buskov S, Hasselstrom JB, Rosa E, Sorensen H, Sorenson JC (1999) Bioactives from Cruciferous crops especially glucosinolate derived products produced in pilot plant scale and used as biocides supplementary to synthetic pesticides. Paper presented at International Rapeseed Congress, 10. International Rapeseed Congress, 1991, Canberra, Australia

  • Bajguz A (2000) Blockade of heavy metals accumulation in Chlorella vulgaris cells by 24-epibrassinolide. Plant Physiol Biochem 38(10):797–801. https://doi.org/10.1016/S0981-9428(00)01185-2

    Article  CAS  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47(1):1–8. https://doi.org/10.1016/j.plaphy.2008.10.002

    Article  CAS  PubMed  Google Scholar 

  • Bajwa AA (2014) Sustainable weed management in conservation agriculture. Crop Prot 65:105–113

    Article  Google Scholar 

  • Bajwa AA, Farooq M (2017) Seed priming with sorghum water extract and benzyl amino purine along with surfactant improves germination metabolism and early seedling growth of wheat. Arch Agron Soil Sci 63:319–329

    Article  Google Scholar 

  • Bajwa AA, Khalid S, Sadia S, Nabeel M, Nafees W (2013) Influence of combinations of allelopathic water extracts of different plants on wheat and wild oat. Pak J Weed Sci Res 19:157–166

    Google Scholar 

  • Bajwa AA, Ehsaullah Anjum SA, Nafees W, Tanveer M, Saeed S (2014) Impact of fertilizer use on weed management in conservation agriculture: a review. Pak J Agric Res 27:161–171

    Google Scholar 

  • Bajwa AA, Mahajan G, Chauhan BS (2015) Nonconventional weed management strategies for modern agriculture. Weed Sci 63:723–747

    Article  Google Scholar 

  • Bajwa AA, Chauhan BS, Farooq M, Shabbir A, Adkins SW (2016) What do we really know about alien plant invasion? A review of the invasion mechanism of one of the world’s worst weeds. Planta 244:39–57

    Article  CAS  PubMed  Google Scholar 

  • Bajwa AA, Walsh M, Chauhan BS (2017) Weed management using crop competition in Australia. Crop Prot 95:8–13

    Article  Google Scholar 

  • Bajwa AA, Farooq M, Nawaz A (2018) Seed priming with sorghum extracts and benzyl aminopurine improves the tolerance against salt stress in wheat (Triticum aestivum L.). Physiol Mol Biol Plants. https://doi.org/10.1007/s12298-018-0512-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Barba FJ, Nikmaram N, Roohinejad S, Khelfa A, Zhu Z, Koubaa M (2016) Bioavailability of glucosinolates and their breakdown products: impact of processing. Front Nutr 3:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batish DR, Singh HP, Kaur S (2001) Crop allelopathy and its role in ecological agriculture. J Crop Prod 4:121–161

    Article  CAS  Google Scholar 

  • Batish DR, Singh HP, Setia N, Kaur S, Kohli RK (2006) 2-Benzox- azolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities in mung bean (Phaseolus aureus). Plant Physiol Biochem 44:819–827

    Article  CAS  PubMed  Google Scholar 

  • Bell DT, Muller CH (1973) Dominance of California annual grasslands by Brassica nigra. Am Midland Nat 90:277–299

    Article  Google Scholar 

  • Bending GD, Lincoln SD (1999) Characterisation of volatile sulphur-containing compounds produced during decomposition of Brassica juncea tissues in soil. Soil Bio Biochem 31:695–703

    Article  CAS  Google Scholar 

  • Bertholdsson NO (2012) Allelopathy-A tool to improve the weed competitive ability of wheat with herbicide-resistant black grass (Alopecurus myosuroides Huds.). Agron J 2:284–294

    Article  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Bhadoria PBS (2011) Allelopathy: a natural way towards weed management. Am J Exp Agric 1:7–20

    Google Scholar 

  • Bhowmik PC, Inderjit (2003) Challenges and opportunities in implementing allelopathy for natural weed management. Crop Prot 22:661–667

    Article  Google Scholar 

  • Bialy Z, Oleszek W, Lewis J, Fenwick GR (1990) Allelopathy potential of glucosinolates (mustard oil glysides) and their degradation products against wheat. Plant Soil 129:181–277

    Article  Google Scholar 

  • Biswas PK, Morshed MM, Ullah MJ, Irin IJ (2014) Allelopathic effect of Brassica on weed control and yield of wheat. Bangladesh Agron J 17(1):73–80

    Article  Google Scholar 

  • Blum U, Shafer SR, Lehman ME (1999) Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. an experimental model. Crit Rev Plant Sci 18:673–693

    Article  CAS  Google Scholar 

  • Boydston R, Hang A (1995) Rapeseed (Brassica napus L.) green manure crop suppresses weeds in potato (Solanum tubeosum L.). Weed Technol 9:669–675

    Article  Google Scholar 

  • Boydston RA, Morra MJ, Borek V, Clayton L, Vaughn SF (2011) Onion and weed response to mustard (Sinapis alba) seed meal. Weed Sci 59:546–552

    Article  CAS  Google Scholar 

  • Bressan M, Roncato MA, Bellvert F, Comte G, el ZaharHaichar F, Achouak W, Berge O (2009) Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J 3:1243–1257. https://doi.org/10.1038/ismej.2009.68

    Article  CAS  PubMed  Google Scholar 

  • Brown PD, Morra MJ (1996) Hydrolysis products of glucosinolates in Brassica napus tissues as inhibitors of seed germination. Plant Soil 181:307–316

    Article  CAS  Google Scholar 

  • Burgos NR, Talbert RE, Kim KS, Kuk YI (2004) Growth inhibition and root ultrastructure of cucumber seedlings exposed to allelochemicals from rye (Secale cereale). J Chem Ecol 30:671–689

    Article  CAS  PubMed  Google Scholar 

  • Cai SL, Mu XQ (2012) Allelopathic potential of aqueous leaf extracts of Datura stramonium L. on seed germination, seedling growth and root anatomy of Glycine max (L.) Merrill. Allelopathy J 30:235–245

    Google Scholar 

  • Cheema ZA, Khaliq A (2000) Use of sorghum allelopathic properties to control weeds in irrigated wheat in semi-arid region of Punjab. Agric Ecosyst Environ 79:105–112

    Article  Google Scholar 

  • Cheema ZA, Rakha A, Khaliq A (2000) Use of sorgaab and sorghum mulch for weed management in mung bean. Pak J Agric Sci 37:140–144

    Google Scholar 

  • Cheema ZA, Khaliq A, Saeed S (2004) Weed control in maize (Zea mays L.) through sorghum allelopathy. J Sust Agric 23:73–86

    Article  Google Scholar 

  • Cheng F, Cheng Z (2015) Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci 6:1020. https://doi.org/10.3389/fpls.2015.01020

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi CD, Kim SC, Lee SK (1990) Agricultural use of the plant growth regulators, effect of brassinolide on reducing heribicidal phytotoxicity of rice seedlings. Res Rep Rural Dev Adm Rice 32(1):65–71

    Google Scholar 

  • Chon SU, Jennings JA, Nelson CJ (2006) Alfalfa (Medicago sativa L.) autotoxicity: current status. Allelopathy J 18:57–80

    Google Scholar 

  • Clark A (2008) Managing cover crops profitably. Diane, Collingdale

    Google Scholar 

  • Clarke DB (2010) Glucosinolate, structures and analysis in food. Anal Methods 2:310–325

    Article  CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) BRASSINOSTEROIDS: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  CAS  PubMed  Google Scholar 

  • Dai R, Lim LT (2014) Release of allyl isothiocyanate from mustard seed mealpowder. J Food Sci 79:E47–E53

    Article  CAS  PubMed  Google Scholar 

  • Dalio RJD, Pinheiro HP, Sodek L, Haddad CRB (2011) The effect of 24-epibrassinolide and clotrimazole on the adaptation of Cajanus cajan (L.) Millsp. to salinity. Physiol Plant 33(5):1887–1896. https://doi.org/10.1007/s11738-011-0732-x

    Article  CAS  Google Scholar 

  • de Albuquerque MB, dos Santos RC, Lima LM, de Albuquerque Melo Filho P, Nogueira RJMC., Da Câmara CAG, de Rezende Ramos A (2011) Allelopathy, an alternative tool to improve cropping systems: a review. Agron Sust Dev 31:379–395. https://doi.org/10.1051/agro/2010031

    Article  Google Scholar 

  • Devakumar C, Parmar BS (1993) Pesticides of higher plant and microbialorigin. In: Parmar BS, Devakumar C (eds) Botanical and pesticides. SPS Publication No. 4, Society of Pesticide Science. India and Westvill Publis House, New Delhi, pp 1–73

    Google Scholar 

  • Dhima K, Vasilakoglou I, Paschalidis KA, Gatsis T, Keco R (2012) Productivity and phytotoxicity of six sunflower hybrids and their residues effects on rotated lentil and ivy-leaved speedwell. Field Crops Res 136:42–51. https://doi.org/10.1016/j.fcr.2012.07.016

    Article  Google Scholar 

  • Divi UK, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151. https://doi.org/10.1186/1471-2229-10-151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duke SO (2015) Proving allelopathy in crop-weed interactions. Weed Sci 63(Species issue):121–132

    Article  Google Scholar 

  • Duke SO, Dayan FE, Rimando AM, Schrader KK, Aliotta G, Oliva A, Romagni JG (2002) Chemicals from nature for weed management. Weed Sci 50:138–151

    Article  CAS  Google Scholar 

  • Duke SO, Cedergreen N, Velini ED, Belz RG (2006) Hormesis: is it an important factor in herbicide use and allelopathy? Outlooks Pest Manag 17:29–33

    Google Scholar 

  • Einhellig FA (1986) Mechanisms and modes of action of allelochemicals. In: Putnam AR, Tang CS (eds). The science of allelopathy. Wiley, New York, pp 171–187

    Google Scholar 

  • Einhellig FA (2004) Mode of allelochemical action of phenolic compounds. In: Macias FA, Galindo JCG, Molinilo JMG, Cutler HG (eds) Allelopathy: chemistry and mode of action of allelochemicals. CRC Press, Boca Raton, pp 217–238

    Google Scholar 

  • Einhellig FA, Rasmussen JA (1979) Effects of three phenolic acids on chlorophyll content and growth of soybean and grain sorghum seedlings. J Chem Ecol 5:815–824

    Article  CAS  Google Scholar 

  • Einhellig FA, Muth MS, Schon MK (1985) Effects of allelochemicals on plant-water relationship. In: Thompson AC (ed) The chemistry of allelopathy. American Chemical Society, Washington, D.C., pp 170–195

    Google Scholar 

  • Ellis DR, Guillard K, Adams RG (2000) Purslane as living mulch in broccoli production. Am J Altern Agric 15:50–59. https://doi.org/10.1017/S0889189300008481

    Article  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sehrish S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147. https://doi.org/10.3389/fpls.2017.01147

    Article  PubMed  PubMed Central  Google Scholar 

  • Farhoudi R, Zangane HS, Saeedipour S (2012) Allelopathical effect of barley [Hordeum valgare (L.) cv. Karon] on germination and lipid peroxidation of wild mustard seedling. Res Crop 13:467–471

    Google Scholar 

  • Farooq M, Jabran K, Cheema ZA, Wahid A, Siddique KHM (2011) The role of allelopathy in agricultural pest management. Pest Manag Sci 67:493–506

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Bajwa AA, Cheema SA, Cheema ZA (2013) Application of allelopathy in crop production. Int J Agric Biol 15:1367‒1378

    Google Scholar 

  • Fenwick GR, Griffiths NM, Heaney RK (1983) Bitterness in Brussels sprouts (Brassica oleracea L. var. gemmifera): the role of glucosinolates and their breakdown products. J Sci Food Agric 34:73–80

    Article  CAS  Google Scholar 

  • Friedman J, Waller GR (1983) Caffeine hazards and their prevention in germinating seeds of coffee (Coffea arabica L.). J Chem Ecol 9:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Fujii S, Hirai K, Saka H (1991) Growth-regulating action of brassinolide in rice plants. ACS Symp Series Am Chem Soc 474:306–311

    Article  CAS  Google Scholar 

  • Gerald FL, Blum UB, Fiscus EL (1992) Short-term effects of ferulic acid anion uptake and water relations in cucumber seedlings. J Exp Bot 43:649–655

    Article  Google Scholar 

  • Gianfreda L, Rao MA (2014) Enzymes in agricultural sciences. OMICS Group International, Foster

    Google Scholar 

  • Gil V, Macleod AJ (1980) Studies on glucosinolates degradation in Lepidium sativum seed extract. Phytochem 19:1369–1374. https://doi.org/10.1016/0031-9422(80)80176-2

    Article  CAS  Google Scholar 

  • Gonzalez VM, Kazimir J, Nimbal C, Weston LA, Cheniae GM (1997) Inhibition of a photosystem II electron transfer reaction by the natural product sorgoleone. J Agric Food Chem 45:1415–1421. https://doi.org/10.1021/jf960733w

    Article  CAS  Google Scholar 

  • Gregory LE, Mandava NB (1982) The activity and interaction of brassinolide and gibberellic acid in mung bean epicotyls. Plant Physiol 54:239–243

    Article  CAS  Google Scholar 

  • Grove D, Gayland F, William K (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus L. pollen. Nature 281:216–217

    Article  CAS  Google Scholar 

  • Hallak AMG, Davide LC, Souza IF (1999) Effect of sorghum (Sorghum bicolor L.) root exudates on the cell cycle of the bean plant (Phaseolus vulgaris L.) root. Genet Mol Biol 22:95–99. https://doi.org/10.1590/S1415-47571999000100018

    Article  Google Scholar 

  • Hao J, Xiaorong S, Baofan Z (1991) Ripening effect of brassinolide on tomatoes. J Shenyang Agric Uni 22(4):327–330

    Google Scholar 

  • Haramoto ER, Gallandt ER (2005) Brassica cover cropping: 1. Effects on weed and crop establishment. Weed Sci 53:695–701

    Article  CAS  Google Scholar 

  • Harper JR, Balke NE (1981) Characterization of the inhibition of K+ absorption in oat roots by salicylic acid. Plant Physiol 68:1349–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins RJ, van Dam NM, van Loon JJA (2009) Role of glucosinolates ininsect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Khaliq A, Bajwa AA, Matloob A, Areeb A, Ashraf U, Hafeez A, Imran M (2017) Crop growth and yield losses in wheat due to little seed canary grass infestation differ with weed densities and changes in environment. Planta Daninha 35:e017162328

    Article  Google Scholar 

  • Iqbal MA (2011) Response of canola (Brassica napus L.) to foliar application of moringa (Moringa olifera L.) and brassica (Brassica napus L.) water extracts. MSc Thesis, Dept of Agro, University of Agriculture, Faisalabad, Pak

  • Jabran K, Cheema ZA, Farooq M, Basra SMA, Hussain M, Rehman H (2008) Tank mixing of allelopathic crop water extracts with pendimethalin helps in the management of weeds in canola (Brassica napus) field. Int J Agric Biol 10:293–296

    CAS  Google Scholar 

  • Jabran K, Cheema ZA, Farooq M, Hussain M (2010) Lower doses of pendimethalin mixed with allelopathic crop water extracts for weed management in canola (Brassica napus). Int J Agric Biol 12:335–340

    CAS  Google Scholar 

  • Jabran K, Mahajan G, Sardana V, Chauhan BS (2015) Allelopathy for weed control in agricultural systems. Crop Prot 72:57–65

    Article  Google Scholar 

  • Jabran K, Mahmood K, Melander M, Bajwa AA, Kudsk P (2017) Weed dynamics and management in wheat. Adv Agron 145:97–166

    Article  Google Scholar 

  • Jahangeer A (2011) Response of maize (Zea mays L.) to foliar application of three plant water extracts. MSc Thesis, Dept of Agro, University of Agriculture, Faisalabad, Pakistan

  • James D, Devaraj S, Bellur P, Lakkanna S, Vicini J, Boddupalli S (2012) Novel concepts of broccoli sulforaphanes and disease: induction of phase II antioxidant and detoxification enzymes by enhanced-glucoraphanin broccoli. Nutr Rev 70(11):654–665

    Article  PubMed  Google Scholar 

  • Jamil M, Cheema ZA, Mushtaq MN, Farooq M, Cheema MA (2009) Alternative control of wild oat and canary grass in wheat fields by allelopathic plant water extracts. Agron Sustain Dev 29:475–482

    Article  Google Scholar 

  • Jeffery EH, Brown AF, Kurilich AC, Keck AS, Matusheski N, Klein BP, Juvik JA (2003) Variation in content of bioactive components in broccoli. J Food Comp Anal 16(3):323–330

    Article  CAS  Google Scholar 

  • Jeyakumar P, Velu G, Rajendran C, Amutha R, Savery MA, Chidambaram S (2008) Varied responses of black gram (Vigna mungo) to certain foliar applied chemicals and plant growth regulators. Legume Res 31(2):110–113

    Google Scholar 

  • Jones HS, Vandoren M, Lockwood T (1996) Brassinolide application to Lepidium sativum seeds and the effects on seedling growth. J Plant Growth Regul 15(2):63–66

    Article  Google Scholar 

  • Keating KI (1999) Allelopathy: principles, procedures, processes, and promises for biological control. Adv Agron 67:141–231

    Article  Google Scholar 

  • Khaliq A, Matloob A, Farooq M, Mushtaq MN, Khan MB (2011) Effect of crop residues applied isolated or in combination on the germination and seedling growth of Horse Purslane (Trianthema portulacastrum). Planta Daninha 29(1):121–128

    Article  Google Scholar 

  • Khaliq A, Matloob A, Aslam F, Mushtaq MN, Khan MB (2012) Toxic action of aqueous wheat straw extract on horse purslane. Planta Daninha 30:269–278

    Article  Google Scholar 

  • Khaliq A, Matloob A, Khan MB, Tanveer A (2013) Differential suppression of rice weeds by allelopathic plant aqueous extracts. Planta Daninha 31:21–28. https://doi.org/10.1590/S0100-83582013000100003

    Article  Google Scholar 

  • Khanh TD, Chung MI, Xuan TD, Tawata S (2005) The exploitation of crop allelopathy in sustainable agricultural production. J Agron Crop Sci 191:172–184

    Article  Google Scholar 

  • Kim KS (1989) Effects of plant growth regulator, brassinolide, on seedling growth in rice (Oryza sativa L.). Res Rep Rural Dev Adm 31(1):49–53

    Google Scholar 

  • Kruse M, Strandberg M, Strandberg B (2000) Ecological Effects of Allelopathic Plants-a Review, 66. National Environmental Research Institute. NERI, Technical Report No. 315, Silkeborg. http://www2.dmu.dk/1_viden/2_publikationer/3_rapporter/fr315.pdf

  • Lankau R (2008) A chemical trait creates a genetic trade-off between intra-and interspecific competitive ability. Ecology 89(5):1181–1187

    Article  PubMed  Google Scholar 

  • Larkin RP, Griffin TS (2007) Control of soilborne diseases of potato using Brassica green manures. Crop Prot 26:1067–1077

    Article  Google Scholar 

  • Li X, Kushad MM (2004) Correlation of glucosinolate content to myrosinase activity in horseradish (Armoracia rusticana). J Agri Food Chem 52(23):6950–6955

    Article  CAS  Google Scholar 

  • Li S, Wang P, Yuan W (2010) Induced endogenous autotoxicity in Camptotheca. Front Biosci 2:1196–1210

    Article  Google Scholar 

  • Li S, Wang P, Yuan W, Su Z, Bullard SH (2016) Endocidal regulation of secondary metabolites in the producing organisms. Sci Rep 6:29315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, RapidelS B, de Tourdonnet S, Valantin-Morison M (2009) Mixing plant species in cropping systems: concepts, tools and models: a review. Sustain Agri 329–353

  • Malik MS, Norsworthy JK, Culpepper AS, Riley MB, Bridges W (2008) Use of wild radish (Raphanus raphanistrum) and rye cover crops for weed suppression in sweet corn. Weed Sci 56:588–595

    Article  CAS  Google Scholar 

  • Mandava NB (1988) Plant growth promoting brassinosteroids. Annu Rev Plant Physiol Plant Mol Biol 39:23–52

    Article  CAS  Google Scholar 

  • Mandava NB, Sasse JM, Yopp JH (1981) Brassinolide, a growth-promoting steroidal lactone: activity in selected gibberellin and cytokinin bioassays. Physiol Plant 53:453–461

    Article  CAS  Google Scholar 

  • Mayton HS, Olivier C, Vaughn SF, Loria R (1996) Correlation of fungicidal activity of Brassica species with allyl isothiocyanate production in macerated leaf tissue. J Phytopathol 86:267–271

    Article  CAS  Google Scholar 

  • Mayumi K, Shibaoka H (1995) A possible double role for brassinolide in the reorientation of cortical microtubules in the epidermal cells of azuki bean [Vigna angularis] epicotyls. Plant Cell Physiol 36(1):173–181

    CAS  Google Scholar 

  • Meazza G, Scheffler BE, Tellez MR, Rimando AM, Romagni JG, Duke SO (2002) The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochem 60:281–288. https://doi.org/10.1016/S0031-9422(02)00121-8

    Article  CAS  Google Scholar 

  • Mersie W, Singh M (1993) Phenolic acids affect photosynthesis and protein synthesis by isolated leaf cells of velvet-leaf. J Chem Ecol 19:1293–1301

    Article  CAS  PubMed  Google Scholar 

  • Mitchell JW, Mandava N, Worley JF, Plimmer JR, Smith MV (1970) Brassins-a new family of plant hormones from rape pollen. Nature 225:1065–1066

    Article  CAS  PubMed  Google Scholar 

  • Mithen R (2001) Glucosinolates and the degradation products. In: Callow J (ed) Adv in Bota Res. Academic Press, New York, pp 214–262

    Google Scholar 

  • Mori K (1980) Synthesis of a brassinolide analog with high plant growth promoting activity. Agric Biol Chem 44:1211–1212

    CAS  Google Scholar 

  • Narwal SS (1994) Allelopathy in crop production. Scientific Publishers, Jodhpur

    Google Scholar 

  • Narwal SS (2001) Crop allelopathy for weed management in sustainable agriculture. FirstEurop. Allelopathy Symp. Vigo, Spain, June 21–23

  • Narwal SS (2004) Allelopathy in crop production. Scientific publishers, Jodhpur

    Google Scholar 

  • Nishida N, Tamtosu S, Nagata N, Saito C, Sakai A (2005) Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J Chem Ecol 31:1187–1203. https://doi.org/10.1007/s10886-005-4256-y

    Article  CAS  PubMed  Google Scholar 

  • Norsworthy JK, Meehan JT (2005) Herbicidal activity of eight isothiocyanates on Texas panicum (Panicum texanum), large crabgrass (Digitaria sanguinalis), and sicklepod (Senna obtusifolia). Weed Sci 53:515–520

    Article  CAS  Google Scholar 

  • Oerke EC, Dehne HW (2004) Safeguarding production-losses in major crops and the role of crop protection. Crop Prot 23:275–285

    Article  Google Scholar 

  • Özdemir F, Bor M, Demiral T, Türkan İ (2004) Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. J Plant Growth Regul 42(3):203–211. https://doi.org/10.1023/b:grow.0000026509.25995.13

    Article  Google Scholar 

  • Petersen J, Belz R, Walker F (2001) Weed suppression by release of isothiocyanates from turnip–rape mulch. Agron J 93:37–43

    Article  CAS  Google Scholar 

  • Popova IE, Morra MJ (2014) Simultaneous quantification of sinigrin, sinalbin, andanionic glucosinolate hydrolysis products in Brassica juncea and Sinapis alba seed extracts using ion chromatography. J Agric Food Chem 62:10687–10693

    Article  CAS  PubMed  Google Scholar 

  • Popova IE, Dubie JS, Morra MJ (2017) Optimization of hydrolysis conditions for release of biopesticides from glucosinolates in Brassica juncea and Sinapis alba seed meal extracts. Indus Crops Pro 97:354–359

    Article  CAS  Google Scholar 

  • Price AJ, Charron CS, Sams CE (2005) Allyl isothiocyanate and carbon dioxide produced during degradation of Brassica juncea tissue in different soil conditions. Hort Sci 40:1734–1739

    Article  CAS  Google Scholar 

  • Purvis CE, Jones GPD (1990) Differential response of wheat to retain crop stubbles. II. Other factors influencing allelopathic potential: intraspecific variation. Soil type and stubble quality. Aust J Agric Res 41:243–252. https://doi.org/10.1071/AR9900243

    Article  Google Scholar 

  • Qayyum B, Shahbaz M, Akram NA (2007) Interactive effect of foliar application of 24-epibrassinolide and root zone salinity on morpho-physiological attributes of wheat (Triticum aestivum L.). Agric Biol 9(4):584–589

    CAS  Google Scholar 

  • Raza MM, Khan MA, Ahmad I, Bajwa AA, Aslam H, Ullah BA, Riaz K (2015) Forest pathogens and diseases under changing climate-a review. Pak J Agric Res 28:318–337

    Google Scholar 

  • Rehman APK, Biswas MSA, Sardar MIK (2012) Allelopathic effect of Brassica biomass on yield of wheat. J Expt Bio Sci 3:1

    Google Scholar 

  • Reigosa M, Gomes AS, Ferreira AG, Borghetti F (2013) Allelopathic research in Brazil. Acta Bot Brasilica 27:629–646

    Article  Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic Press, New York

    Google Scholar 

  • Rice AR, Johnson-Maynard JL, Thill DC, Morra MJ (2007) Vegetable crop emergence and weed control following amendment with different Brassicaceae seed meals. Renew Agric Food Sys 22(3):204–212

    Article  Google Scholar 

  • Rizvi SJH, Rizvi V (1992) Exploitation of allelochemicals in improving crop productivity. In: Rizvi SJH, Rizvi V (eds) Allelop basic and App Asp. Champan & Hall, London, pp 443–472

    Google Scholar 

  • Rizvi SJH, Haque H, Singh VK, Rizvi V (1992) A discipline called allelopathy, pp 1–8. In: Rizvi SJH, Rizvi V (eds) Allelop basic and App Asp, Chapman & Hall, London

    Google Scholar 

  • Sanchez-Moreiras AM, Weiss O, Reigosa MJ (2004) Allelopathic evidence in the Poaceae. Bot Rev 69:300–319

    Article  Google Scholar 

  • Sanchez-Moreiras AM, De La Pena TC, Reigosa MJ (2008a) The natural compound benzoxazolin-2(3H)-one selectivity retards cell cycle in lettuce root meristems. Phytochem 69:2172–2179. https://doi.org/10.1016/j.phytochem.2008.05.014

    Article  CAS  Google Scholar 

  • Sanchez-Moreiras AM, Pedrol N, González L, Reigosa MJ (2008b) 2-(3H)-benzoxazolinone (BOA) induces loss of salt tolerance in salt-adapted plants. Plant Biol 11:582–590

    Article  CAS  Google Scholar 

  • Sangeetha C, Baskar P (2015) Allelopathy in weed management: a critical review. Afr J Agric Res 10:1004–1015

    Article  Google Scholar 

  • Sarmah MK, Narwal SS, Yadava JS (1992) Smothering effect of Brassica species on weeds. Proceeding first national symposium allelopathy in agroecosystems. Haryana Agricultural University, Ind society allelo, Hisar, 51–55

  • Shahbaz M, Ashraf M (2007) Influence of exogenous application of brassinosteriod on growth and mineral nutrients of wheat under saline conditions. Pak J Bot 39:513–522

    Google Scholar 

  • Shahid MA, Balal RM, Pervez MA, Abbas T, Aqeel MA, Riaz A et al (2015) Exogenous 24-epibrassinolide elevates the salt tolerance potential of Pea (Pisum sativum L.) by improving osmotic adjustment capacity and leaf water relations. J Plant Nutr 38(7):1050–1072. https://doi.org/10.1080/01904167.2014.988354

    Article  CAS  Google Scholar 

  • Shahzad B, Cheema SA, Farooq M, Cheema ZA, Rehman A, Abbas T (2017) Hormetic influence of foliage applied brassica water extracts on morphological and yield attributes of bread wheat under different fertilizer regimes. Planta Daninha (In press)

  • Shahzad B, Tanveer M, Che Z, Rehman A, Cheema SA, Sharma A, Zhaorong D (2018) Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: a review. Ecotox Env Saf 147:935–944

    Article  CAS  Google Scholar 

  • Sharma A, Kumar V, Singh R, Thukral AK, Bhardwaj R (2015) 24-Epibrassinolide induces the synthesis of phytochemicals effected by imidacloprid pesticide stress in Brassica juncea L. J Pharmacogn Phytochem 4(3):60–64

    CAS  Google Scholar 

  • Sharma A, Kumar V, Bhardwaj R, Thukral AK (2016) Seed pre-soaking with 24-epibrassinolide reduces the imidacloprid pesticide residues in green pods of Brassica juncea L. Toxi Envi Chem. https://doi.org/10.1080/02772248.2016.1146955

    Article  Google Scholar 

  • Sharma A, Kumar V, Kumar R, Shahzad B, Thukral AK, Bhardwaj R (2018) Brassinosteroid-mediated pesticide detoxification in plants: a mini-review. Cogent Food Agric. https://doi.org/10.1080/23311932.2018.1436212

    Article  Google Scholar 

  • Singh I, Shono M (2005) Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. J Plant Growth Regul 47(2):111. https://doi.org/10.1007/s10725-005-3252-0

    Article  CAS  Google Scholar 

  • Singh HP, Batish DR, Kohli RK (2003) Allelopathic interactions and allelochemicals: new possibilities for sustainable weed manage-ment. Crit Rev Plant Sci 22:239–311

    Article  CAS  Google Scholar 

  • Sirhindi G (2013) Brassinosteroids: biosynthesis and role in growth, development, and thermotolerance responses. In: Rout GR, Das AB (eds) Molecular stress physiol plants. Springer India. pp 309–349

  • Sullivan P (2003) Principles of sustainable weed management of croplands. ATTRA Publications IP039

  • Terakado J, Fujihara S, Goto S, Kuratani R, Suzuki Y, Yoshida S, Yoneyama T (2005) Systemic effect of a brassinosteroid on root nodule formation in soybean as revealed by the application of brassinolide and brassinazole. Soil Sci Plant Nutr 51(3):389–395

    Article  CAS  Google Scholar 

  • Tesio F, Ferrero A (2011) Allelopathy, a chance for sustainable weed management. Int J Sust Dev World Ecol 17:377–389

    Article  Google Scholar 

  • Toosi F, Baki BB (2011) Allelopathic potential of Brassica juncea (L.) Czern.var. ensabi. Pak J Weed Sci Res 18:651–656

    Google Scholar 

  • Turk MA, Tawaha AM (2002) Inhibitory effects of aqueous extracts of black mustard on germination and growth of lentil. Pak J Agron 1:28–30

    Article  Google Scholar 

  • Turk MA, Tawaha AM (2003) Allelopathic effect of black mustard (Brassica nigra L.) on germination and growth of wild oat (Avena fatua L.). Crop Prot 22:673–677. https://doi.org/10.1016/S0261-2194(02)00241-7

    Article  Google Scholar 

  • Turk MA, Lee KD, Tawaha AM (2005) Inhibitory effects of aqueous extracts of black mustard on germination and growth of radish. Res J Agric Biol Sci 1:227–231

    Google Scholar 

  • Uddin MR, Park KW, Han SM, Pyon JY, Park SU (2012) Effects of sorgoleone allelochemicals on chlorophyll florescence and growth inhibition in weeds. Allelopathy J 30:61–70

    Google Scholar 

  • Upreti KK, Murti GSR (2004) Effects of brassinosteroids on growth, nodulation, phytohormone content and nitrogenase activity in French bean under water stress. Biol Planta 48(3):407–411

    Article  CAS  Google Scholar 

  • Vaughan SF, Boydston RA (1997) Volatile allelochemicals released by crucifer green manures. J Chem Eco 23:2107–2116

    Article  Google Scholar 

  • Vaughn S (1999) Glucosinolates as natural pesticides: agrochemicals. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Wang CM, Chen HT, Li TC, Weng JH, Jhan YL, Lin SX et al (2014) The role of pentacyclic triterpenoids in the allelopathic effects of Alstonia scholaris. J Chem Ecol 40:90–98. https://doi.org/10.1007/s10886-013-0376-y

    Article  CAS  PubMed  Google Scholar 

  • Warton B, Matthiessen JN, Shackleton MA (2001) Glucosinolate content and isothiocyanate evolution—two measures of the biofumigation potential of plants. J Agric Food Chem 49:5244–5250

    Article  CAS  PubMed  Google Scholar 

  • Weih M, Didon UME, Rönnberg-Wästljung AC, Björkman C (2008) Integrated agricultural research and crop breeding: allelopathic weed control in cereals and long-term productivity in perennial biomass crops. Agric Syst 97(3):99–107. https://doi.org/10.1016/j.agsy.2008.02.009

    Article  Google Scholar 

  • Weston LA (1996) Utilization of allelopathy for weed management in agro-ecosystems. Agron J 88:860–866

    Article  Google Scholar 

  • Wezel A, Casagrande M, Celette F, Vian JF, Ferrer A, Peigné J (2014) Agroecological practices for sustainable agriculture: a review. Agron Sust Dev 34(1):1–20

    Article  Google Scholar 

  • Wu FZ, Pan K, Ma FM, Wang XD (2004) Effects of ciunamic acid on photosynthesis and cell ultrastructure of cucumber seedlings. Acta Hortic Sin 31:183–188

    CAS  Google Scholar 

  • Xia XJ, Huang YY, Wang L, Huang LF, Yu YL, Zhou YH et al (2006) Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. Pestic Biochem Physiol 86(1):42–48. https://doi.org/10.1016/j.pestbp.2006.01.005

    Article  CAS  Google Scholar 

  • Xia XJ, Zhang Y, Wu JX, Wang JT, Zhou YH, Shi K et al (2009) Brassinosteroids promote metabolism of pesticides in Cumcumber. J Agric Food Chem 57:8406–8413

    Article  CAS  PubMed  Google Scholar 

  • Xu SD, Zhonghuan H, Ruoyun H (2009) Physiological effects of brassinolide on cold resistance in seedlings of Pinus bungeana. J Shenyang Agric Uni 22(2):123–127

    Google Scholar 

  • Yokota T, Takahashi N (1986) Transport and metabolism of brassinosteriods in rice Plant Growth Substances (ed. Bopp M), Springer Verlag, Berlin, pp 129–138

    Google Scholar 

  • Yopp JH, Mandava NB, Sasse JM (1981) Brassinolide, a growth-promoting steroidal lactone I: activity in selected auxin bioassays. Physiol Plant 53:445–452

    Article  CAS  Google Scholar 

  • Younesabadi M (2005) Study on allelopathic interference of rape- seed (Brassica napus var. belinda) on germination and growth of cotton (Gossypium hirsutum) and its dominant weeds. Proc. 4 th World Cong. Allelopathy, Aug. 2005. Wagga Wagga, Aus, 283–286

  • Yu J, Morishita DW (2014) Response of seven weed species to corn gluten mealand white mustard (Sinapis alba) seed meal rates. Weed Technol 28:259–265

    Article  Google Scholar 

  • Yu JQ, Ye SF, Zhang MF, Hu WH (2003) Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem Syst Ecol 32:129–139. https://doi.org/10.1016/S0305-1978(02)00150-3

    Article  Google Scholar 

  • Zaji B, Majd A (2011) Allelopathic potential of canola (Brassica napus L.) residues on weed suppression and yield response of maize (Zea mays L.). International conference on chemical, ecology and environmental sciences (IICCEES’ 2011)

  • Zhou Y, Xia X, Yu G, Wang J, Wu J, Wang M, Yang Y, Shi K, Yu Y, Chen Z, Gan J (2015) Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants. Sci Rep 5:9018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All the authors declared no conflict of interest in this article. This work was supported by the National Key Research and Development Program of China (2017YFD0301301) and the National Natural Science Foundation of China (31670264).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, S., Shahzad, B., Bajwa, A.A. et al. Utilizing the Allelopathic Potential of Brassica Species for Sustainable Crop Production: A Review. J Plant Growth Regul 38, 343–356 (2019). https://doi.org/10.1007/s00344-018-9798-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-018-9798-7

Keywords

Navigation