Skip to main content

Advertisement

Log in

PvTB1, a Teosinte Branched1 Gene Homolog, Negatively Regulates Tillering in Switchgrass

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Switchgrass belongs to the family Poaceae and genus Panicum, and is a highly versatile grass used for soil and water conservation, livestock production, and biomass production for energy conversion. Tillering plays an important role in determining the morphology of the aboveground parts and the final biomass yield of switchgrass. In this study, we first cloned and identified PvTB1, a teosinte branched1 (TB1) gene homolog in switchgrass, based on its sequence similarity with the TB1 gene, which is involved in lateral branching in maize. Similar to other TB1 genes, the PvTB1 gene encoded putative transcription factors containing a basic helix-loop-helix type of DNA-binding motif called the TCP domain. Tiller emergence and development were obviously inhibited by overexpression of PvTB1 in transgenic plants, and the mutated phenotypes could be rescued using 6-benzylaminopurine. Overexpression or suppression of PvTB1 through a transgenic approach resulted in changes in tiller number, stem height, stem diameter, and biomass yield. Taken together, our results suggest that PvTB1 negatively regulates tillering in switchgrass, presumably via its expression in axillary buds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adler PR, Sanderson MA, Boateng AA, Weimer PJ, Jung HJG (2006) Biomass yield and biofuel quality of switchgrass harvested in fall or spring. Agron J 98:1518–1525

    Article  CAS  Google Scholar 

  • Aguilar-Martínez JA, Poza-Carrión C, Cubas P (2007) Arabidopsis BRANCHED1acts as an integrator of branching signals within axillary buds. Plant Cell 19:458–472

    Article  PubMed Central  PubMed  Google Scholar 

  • Alexandrova KS, Denchev PD, Conger BV (1996) Micropropagation of switchgrass by node culture. Crop Sci 36:1709–1711

    Article  CAS  PubMed  Google Scholar 

  • Beaty ER, Engel JL, Powell JD (1978) Tiller development and growth in switchgrass. J Range Manag 31:361–365

    Article  Google Scholar 

  • Boe A (2007) Variation between two switchgrass cultivars for components of vegetative and seed biomass. Crop Sci 47:636–642

    Article  Google Scholar 

  • Boe A, Beck DL (2008) Yield components of biomass in switchgrass. Crop Sci 48:1306–1311

    Article  Google Scholar 

  • Bowman JL, Eshed Y (2000) Formation and maintenance of the shoot apical meristem. Trends Plant Sci 5:110–115

    Article  CAS  PubMed  Google Scholar 

  • Cubas P, Lauter N, Doebley J, Coen E (1999) The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 18:215–222

    Article  CAS  PubMed  Google Scholar 

  • Das MK, Fuentes RG, Taliaferro CM (2004) Genetic variability and trait relationships in switchgrass. Crop Sci 44:443–448

    Article  Google Scholar 

  • Davies PJ (1987) The plant hormones: their nature, occurrence, and functions. In: Davies PJ (ed) Plant hormones and their role in plant growth and development 1987. Martinus Nijhoff Publishers, Dordrecht, pp 1–11

    Chapter  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995) Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346

    PubMed Central  CAS  PubMed  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  CAS  PubMed  Google Scholar 

  • Fu ChX, Mielenz JR, Xiao XR, Ge YX, Hamilton CY, Rodriguez M, Chen F, Foston M, Ragauskas A, Bouton J, Dixon RA, Dixon RA, Wang ZY (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci USA 108:3803–3808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu ChX, Sunkar R, Zhou C, Shen H, Zhang JY, Matts J, Wolf J, Mann DGJ Jr, Tang YH, Wang ZY (2012) Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnol J 10:443–452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ge YX, Fu CX, Bhandari H, Bouton J, Brummer EC, Wang ZY (2011) Pollen viability and longevity of switchgrass (Panicum virgatum L.). Crop Sci 51:2698–2705

    Article  Google Scholar 

  • Guo S, Xu Y, Liu H, Mao Z, Zhang C, Ma Y, Zhang Q, Meng Z, Chong K (2013) The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun 4:1566–1578

    Article  PubMed Central  PubMed  Google Scholar 

  • He Z (1993) A laboratory guide to chemical control technology on field crop. Beijing Agricultural University Press, Beijing, pp 60–68

    Google Scholar 

  • Hubbard L, McSteen P, Doebley J, Hake S (2002) Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics 162:1927–1935

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kashiwagi T, Togawa E, Hirotsu N, Ishimaru K (2008) Improvement of lodging resistance with QTLs for stem diameter in rice (Oryza sativa L.). Theor Appl Genet 117:749–757

    Article  PubMed  Google Scholar 

  • LaskowskiMJ Williams ME, Nusbaum HC, Sussex IM (1995) Formation of lateral root meristems is a two-stage process. Development 121:3303–3310

    Google Scholar 

  • Leyser O (2001) Auxin signalling: the beginning, the middle and the end. Curr Opin Plant Biol 4:382–386

    Article  CAS  PubMed  Google Scholar 

  • Lukens L, Doebley J (2001) Molecular evolution of the teosinte branched gene among maize and related grasses. Mol Biol Evol 18:627–638

    Article  CAS  PubMed  Google Scholar 

  • Minakuchi K, Kameoka H, Yasuno N, Umehara M, Luo L, Kobayashi K, Hanada A, Ueno K, Asami T, Yamaguchi S, Kyozuka J (2010) FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol 51:1127–1135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moore K, Moser LE, Vogel KP, Waller SS, Johnson B, Pedersen JF (1991) Describing and quantifying growth stages of perennial forage grasses. Agron J 83:1073–1077

    Article  Google Scholar 

  • Muir JP, Sanderson MA, Ocumpaugh WR, Jones RM, Reed RL (2001) Biomass production of’Alamo’ switchgrass in response to nitrogen, phosphorus, and row spacing. Agron J 93:896–901

    Article  Google Scholar 

  • Parrish DJ, Casler MD, Monti A (2012) The evolution of switchgrass as an energy crop. In: Monti A (ed) Switchgrass, green energy and technology. Springer, London, pp 1–28

    Google Scholar 

  • Richards H, Rudas V, Sun H, McDaniel J, Tomaszewski Z, Conger B (2001) Construction of a GFP-BAR plasmid and its use for switchgrass transformation. Plant Cell Rep 20:48–54

    Article  CAS  Google Scholar 

  • Sanderson M, Reed RL, McLaughlin SB, Wullschleger SD, Conger BV, Parrish DJ, Wolf DD, Taliaferro C, Hopkins AA, Ocumpaugh WR, Hussey MA, Read JC, Tischle CR (1996) Switchgrass as a sustainable bioenergy crop. Bioresour Technol 56:83–93

    Article  CAS  Google Scholar 

  • Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Schmitz G, Tillmann E, Carriero F, Fiore C, Cellini F, Theres K (2002) The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. Proc Natl Acad Sci USA 99:1064–1069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K (1999) The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc Natl Acad Sci USA 96:290–295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song GQ, Walworth A, Hancock JF (2012) Factors influencing Agrobacterium-mediated transformation of switchgrass cultivars. Plant Cell Tissue Organ Cult 108:445–453

    Article  CAS  Google Scholar 

  • Stirnberg P, van De Sande K, Leyser HO (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131–1141

    CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (1998) Plant physiology, 2nd edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J 33:513–520

    Article  CAS  PubMed  Google Scholar 

  • Vain P, McMullen MD, Finer JJ (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep 12:84–88

    Article  CAS  PubMed  Google Scholar 

  • Vogel KP (2004) Switchgrass. In: Moser LE, Burson BL, Sollenberger LE (eds) Warm-season (C4) grasses. ASA-CSSA-SSSA Monograph, Madison, pp 561–588

    Google Scholar 

  • Wang X, Below FE (1996) Cytokinins in enhanced growth and tillering of wheat induced by mixed nitrogen source. Crop Sci 36:121–126

    Article  CAS  Google Scholar 

  • Wang Z, Chen C, Xu Y, Jiang R, Han Y, Xu Z, Chong K (2004) A practical vector for efficient knockdown of gene expression in rice (Oryza sativa L.). Plant Mol Biol Rep 22:409–417

    Article  CAS  Google Scholar 

  • Wang YX, Zeng X, Peal L, Tang YH, Wu YQ, Mahalingam R (2013) Transcriptome analysis of nodes and buds from high and low tillering switchgrass inbred lines. PLoS ONE 8:e83772

    Article  PubMed Central  PubMed  Google Scholar 

  • Weiler EW, Jourdan PS, Conrad W (1981) Levels of indole-3-acetic acid in intact and decapitated coleoptiles as determined by a specific and highly sensitive solid-phase enzyme immunoassay. Planta 153:561–571

    Article  CAS  PubMed  Google Scholar 

  • Xi YJ, Fu CX, Ge YX, Nandakumar R, Hisano H, Bouton J, Wang ZY (2009) Agrobacterium-mediated transformation of switchgrass and inheritance of the transgenes. Bioenergy Res. 2:275–283

    Article  Google Scholar 

  • Xia K, Wang R, Ou X, Fang Z, Tian C, Duan J, Wang Y, Zhang M (2012) OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS ONE 7:e30039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang YM, Xu CN, Wang BM, Jia JZ (2001) Effects of plant growth regulators on secondary wall thickening of cotton fibres. Plant Growth Regul 35:233–237

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Science Foundation of China (31171607, 31371690).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajun Xi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Wang, Y., Shi, L. et al. PvTB1, a Teosinte Branched1 Gene Homolog, Negatively Regulates Tillering in Switchgrass. J Plant Growth Regul 35, 44–53 (2016). https://doi.org/10.1007/s00344-015-9505-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-015-9505-x

Keywords

Navigation