Skip to main content
Log in

Naringenin- and Funneliformis mosseae-Mediated Alterations in Redox State Synchronize Antioxidant Network to Alleviate Oxidative Stress in Cicer arietinum L. Genotypes Under Salt Stress

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Salinity causes multifarious adverse effects in plants and one of its inevitable consequences is overproduction of reactive oxygen species (ROS). Arbuscular mycorrhizal (AM) symbiosis helps plants to thrive in saline soils by countering stress-induced oxidative damage, and flavonoids have been reported to improve plant redox status. However, little is known about the influence of flavonoids and/or AM in transforming the competence of the entire antioxidant machinery in salt-stressed plants. The present study was conducted to evaluate the potential role of naringenin (Nar) and mycorrhiza (Funneliformis mosseae) in modulating the antioxidant network to mitigate salinity-induced oxidative stress of two Cicer arietinum L. genotypes (PBG 5 and DCP 92-3). Despite the increase in enzymatic and non-enzymatic antioxidants under salt stress, ROS buildup increased, more in DCP 92-3 than PBG 5. Under salt stress, the increasing oxidative burden was coupled with lowering of ascorbate/dehydroascorbate and reduced/oxidized glutathione levels indicating that for efficient antioxidation, maintaining redox buffers may be of pivotal importance. However, in Nar-treated and/or AM plants, increased antioxidants efficiently attenuated oxidative loads, with the greatest redox stability attained by +Nar +AM plants. Improved efficacy was related to elevated recycling of reduced glutathione and ascorbate, thereby facilitating higher activity of scavenging antioxidants. However, PBG 5 was more responsive to Nar treatment and/or AM inoculation and displayed better redox equilibrium than DCP 92-3. The study suggested that to impart salinity tolerance to chickpea, besides improving nodulation, mitigation of oxidative burden by shifting the redox system toward a more reduced form is another important protective mechanism adopted by Nar and F. mosseae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbaspour H, Saeidi-Sar S, Afshari H, Abdel-Wahhab MA (2012) Tolerance of mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. J Plant Physiol 169:704–709

    Article  CAS  PubMed  Google Scholar 

  • Abogadallah GM (2010) Antioxidative defense under salt stress. Plant Signal Behav 5(4):369–374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aebi H (1984) Catalase in vitro. In: Packer L (ed) Methods in enzymology, 105th edn. Academic Press, Orlando, pp 121–126

    Google Scholar 

  • Agati G, Biricolti S, Guidi L, Ferrini F, Fini A, Tattini M (2011) The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. J Plant Physiol 168:204–212

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Brunetti C, Ferdinando MD, Ferrini F, Pollastri S, Tattini M (2013) Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiol Biochem 72:35–45

    Article  CAS  PubMed  Google Scholar 

  • Alguacil MM, Hernández JA, Caravaca F, Portillo B, Roldán A (2003) Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiol Plant 118:562–570

    Article  CAS  Google Scholar 

  • Arakawa N, Tsutsumi K, Sanceda NG, Kurata T, Inagaki C (1981) A rapid and sensitive method for the determination of ascorbic acid using 4,7-diphenyl-1,10phenanthroline. Agric Biol Chem 45:1289–1290

    Article  CAS  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Current Sci 82:1227–1238

    CAS  Google Scholar 

  • Asada K (1984) Chloroplasts: formation of active oxygen and its scavenging. Methods Enzymol 105:422–429

    Article  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  PubMed  Google Scholar 

  • Blokhiana O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  Google Scholar 

  • Bonanomi A, Oetikar JH, Guggenheim R, Boller T, Weimken A, Vögeli-Lange R (2001) Arbuscular mycorrhizas in mini-mycorrhizotrons: first contact of Medicago truncatula roots with Glomus intraradices induces chalcone synthase. New Phytol 150:573–582

    Article  CAS  Google Scholar 

  • Brunetti C, Di Ferdinando M, Fini A, Pollastri S, Tattini M (2013) Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. Int J Mol Sci 14:3540–3555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cabot C, Sibolea JV, Barceló J, Poschenrieder C (2014) Lessons from crop plants struggling with salinity, Plant Sci. http://dx.doi.org/10.1016/j.plantsci.2014.04.013

  • Castillo FJ, Greppin H (1988) Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum album L. leaves after ozone exposure. Environ Exp Bot 28:232–233

    Article  Google Scholar 

  • Castillo FI, Penel I, Greppin H (1984) Peroxidase release induced by ozone in Sedum album leaves. Plant Physiol 74:846–851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cavia-Saiz M, Busto MD, Pilar-Izquierdo MC, Ortega N, Perez-Mateos M, Muñiz P (2010) Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study. J Sci Food Agric 90:1238–1244

    Article  CAS  PubMed  Google Scholar 

  • Ceccarelli N, Curadi M, Martelloni L, Sbrana C, Picciarelli P, Giovannetti M (2010) Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil 335:311–323

    Article  CAS  Google Scholar 

  • Chellamma S, Pillai BV-S (2013) Approaches to Improving Salt Tolerance in Maize. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt stress in plants- signalling. Omics and adaptations. Springer Science + Business Media, New York, pp 261–281

    Chapter  Google Scholar 

  • Chen S, Jin W, Liu A, Zhang S, Liu D, Wang F, Lin X, He C (2013) Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Sci Hort 160:222–229

    Article  CAS  Google Scholar 

  • Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S (2012) Arbuscular mycorrhizal fungi modulate the leaf transcriptome of a Populus alba L. clone grown on a zinc and copper-contaminated soil. Environ Exp Bot 75:25–35

    Article  CAS  Google Scholar 

  • Dalpé Y, Monreal M (2004) Arbuscular mycorrhiza inoculum to support sustainable cropping systems. Crop Manag. doi:10.1094/CM-2004-0301-09-RV

    Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Throne TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Dodd IC, Ruíz-Lozano JM (2012) Microbial enhancement of crop resource use efficiency. Curr Opin Biotechnol 23:236–242

    Article  CAS  PubMed  Google Scholar 

  • Doke N (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophtora infestans and the hyphal wall components. Physiol Plant Pathol 23:345–357

    Article  CAS  Google Scholar 

  • Dolatabadian A, Sanavy SAMM, Ghanati F, Gresshoff PM (2012) Morphological and physiological response of soybean treated with the microsymbiont Bradyrhizobium japonicum pre-incubated with genistein. S Afr J Bot 79:9–18

    Article  Google Scholar 

  • Dunajska-Ordak K, Skorupa-Kłaput M, Kurnik K, Tretyn A, Tyburski J (2014) Cloning and expression analysis of a gene encoding for ascorbate peroxidase and responsive to salt stress in beet (Beta vulgaris). Plant Mol Biol Rep 32:162–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eltelib HA, Fujikawa Y, Esaka M (2012) Overexpression of the acerola (Malpighia glabra) monodehydroascorbate reductase gene in transgenic tobacco plants results in increased ascorbate levels and enhanced tolerance to salt stress. S Afr J Bot 78:295–301

    Article  CAS  Google Scholar 

  • Estrada B, Aroca R, Barea JM, Ruíz-Lozano JM (2013) Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci 201–202:42–51

    Article  PubMed  Google Scholar 

  • Evelin H, Kapoor R (2014) Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants. Mycorrhiza 24:197–208

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feng H, Tian X, Liu Y, Li Y, Zhang X, Jones BJ, Sun Y, Sun J (2013) Analysis of flavonoids and the flavonoid structural genes in brown fiber of upland cotton. PLoS One 8:e58820. doi:10.1371/journal.pone.0058820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fini A, Brunetti C, Ferdinando MD, Ferrini F, Tattini M (2011) Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal Behav 6(5):709–711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flowers TJ, Gaur PM, Gowda CLL, Krishnamurthy L, Samineni S, Siddique KHM, Turner NC, Vadez V, Varshney RK, Colmer TD (2010) Salt sensitivity in chickpea. Plant Cell Environ 33:490–509

    Article  CAS  PubMed  Google Scholar 

  • Fotopoulos V, Ziogas V, Tanou G, Molassiotis A (2010) Involvement of AsA/DHA and GSH/GSSG ratios in gene and protein expression and in the activation of defence mechanisms under abiotic stress conditions. In: Anjum NA, Chan M-T, Umar S (eds) Ascorbate-glutathione pathway and stress tolerance in plants. doi:10.1007/978-90-481-9404-9_10, Springer Science + Business Media B.V, New York.

  • Foyer CH, Noctor G (2011) Ascorbate and Glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garg N, Pandey R (2014) Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Millsp.) genotypes. Myorrhiza. doi:10.1007/s00572-014-0600-9

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Hajiboland R (2013) Role of arbuscular mycorrhiza in amelioration of salinity. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt stress in plants: signalling, omics and adaptations. Springer, New York, pp 301–354

    Chapter  Google Scholar 

  • Harborne JB (1998) Phytochemical methods: a guide to modern techniques of plant analysis. Chapman and Hall, London

    Google Scholar 

  • Harrison MJ, Dixon RA (1993) Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula. MPMI 6:643–654

    Article  CAS  Google Scholar 

  • Hernández I, Alegre L, Munné-Bosch S (2004) Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol 24:1303–1311

    Article  PubMed  Google Scholar 

  • Hernández I, Alegre L, van Breusegem F, Munné-Bosch S (2009) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14:125–132

    Article  PubMed  Google Scholar 

  • Hernández M, Fernandez-Garcia N, Diaz-Vivancos P, Olmos E (2010) A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. J Exp Bot 61:521–535

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J Exp Bot 56:3041–3049

    Article  CAS  PubMed  Google Scholar 

  • Jiang XY, Huang Y (2003) Mechanism of contribution of mycorrhizal fungi to plant saline-alkali tolerance. Ecol Environ 12:353–356

    Google Scholar 

  • Liu LZ, Gong ZQ, Zhang YL, Li PJ (2011) Growth, cadmium accumulation and physiology of marigold (Tagetes erecta L.) as affected by arbuscular mycorrhizal fungi. Pedosphere 21:319–327

    Article  CAS  Google Scholar 

  • Mahajan M, Yadav SK (2013) Effect of quercetin and epicatechin on the transcript expression and activity of antioxidant enzymes in tobacco seedlings. Amr J Biochem Mol Bio 3:81–90

    Article  CAS  Google Scholar 

  • Mahajan M, Joshi R, Gulati A, Yadav SK (2012) Increase in flavan-3-ols by silencing flavonol synthase mRNA affects the transcript expression and activity levels of antioxidant enzymes in tobacco. Plant Biol 14:725–733

    Article  CAS  PubMed  Google Scholar 

  • Manchanda G, Garg N (2011) Alleviation of salt-induced ionic, osmotic and oxidative stresses in Cajanus cajan nodules by AM inoculation. Plant Biosyst 145:88–97

    Article  Google Scholar 

  • Masuoka N, Matsuda M, Kubo I (2012) Characterisation of the antioxidant activity of flavonoids. Food Chem 131:541–545

    Article  CAS  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) 0 A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115(3):495–501

    Article  Google Scholar 

  • Medeiros CD, Neto JRCF, Oliveira MT, Rivas R, Pandolfi V, Kido ÉA, Baldani JI, Santos MG (2014) Photosynthesis, antioxidant activities and transcriptional responses in two sugarcane (Saccharum officinarum L.) cultivars under salt stress. Acta Physiol Plant 36:447–459

    Article  CAS  Google Scholar 

  • Mehlich A (1953) Determination of P, Ca, Mg, K, Na and NH4. Short test methods used in Soil Testing Division, Department of Agriculture, Raleigh

    Google Scholar 

  • Mhadhbi H, Fotopoulos V, Mylona PV, Jebara M, Aouani ME, Polidoros AN (2011) Antioxidant gene–enzyme responses in Medicago truncatula genotypes with different degree of sensitivity to salinity. Physiol Plant 141:201–214

    Article  CAS  PubMed  Google Scholar 

  • Miransari M, Smith DL (2009) Alleviating salt stress on soybean (Glycine max (L.) Merr.) –Bradyrhizobium japonicum symbiosis, using signal molecule genistein. Eur J Soil Biol 45(2):146–152

    Article  CAS  Google Scholar 

  • Miyasaka SC, Habte M, Friday JB, Johnson EV (2003) Manual on arbuscular mycorrhizal fungus production and inoculation techniques. Honolulu (HI): University of Hawaii. 4 p. (Soil and Crop Management; SCM-5)

  • Nakagawara S, Sagisaka S (1984) Increase in enzyme activities related to ascorbate metabolism during cold acclimation of poplar twigs. Plant Cell Physiol 25:899–906

    CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nelson DW, Sommers LE (1973) Determination of total nitrogen in plant material. Agron J 65:109–112

    Article  CAS  Google Scholar 

  • Novák K, Chovanec P, Škrdleta V, Kropáčová M, Lisá L, Němcová M (2002) Effect of exogenous flavonoids on nodulation of pea (Pisum sativum L.). J Exp Bot 53(375):1735–1745

    Article  PubMed  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL (ed) Methods of soil analysis, Agron. No. 9, Part 2-Chemical and microbiological properties. 2nd edn. American Society of Agronomy, Madison, p 403–430

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. T Brit Mycol Soc 55(1):158–161

    Article  Google Scholar 

  • Porcel R, Barea JM, Ruiz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143

    Article  CAS  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcón-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  CAS  PubMed  Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils, United States Department of Agriculture, Soil and Water Conservation Research Branch, Agricultural Research Service, Agriculture Handbook No. 60, US Government Printing Office, Washington 25, DC. Available at http://www.ars.usda.gov/sp2UserFiles/Place/20360500/hb60_pdf/hb60complete.pdf

  • Rodrigues AC, Bonifacio A, Antunes JEL, da Silveira JAG, do Vale Barreto Figueiredo M (2013) Minimization of oxidative stress in cowpea nodules by the interrelationship between Bradyrhizobium sp. and plant growth-promoting bacteria. Appl Soil Ecol 64:245–251

    Article  Google Scholar 

  • Ruiz- Lozano JM, Collados C, Barea JM, Azcón R (2001) Cloning of cDNAs encoding SODs from lettuce plants which show differential regulation by arbuscular mycorrhizal symbiosis and by drought stress. J Exp Bot 52:2241–2242

    CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044

    Article  CAS  PubMed  Google Scholar 

  • Sakihama Y, Cohen MF, Grace SC, Yamasaki H (2002) Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177:67–80

    Article  CAS  PubMed  Google Scholar 

  • Scervino JM, Ponce MA, Monica ID, Vierheilig H, Ocampo JA, Godeas A (2009) Development of arbuscular mycorrhizal fungi in the presence of different patterns of Trifolium repens shoot flavonoids. J Soil Sci Plant Nutr 9:102–115

    Google Scholar 

  • Schüβler A, Walker C (2010) The Glomeromycota: a species list with new families and genera. Edinburgh & Kew, UK, The Royal Botanic Garden; Munich, Germany: Botanische Staatssammlung Munich and Oregon, USA: Oregon State University. http://schuessler.userweb.mwn.de/amphylo/Schuessler&Walker2010_Glomeromycota.pdf

  • Sečenji M, Hideg É, Bebes A, Györgyey J (2010) Transcriptional differences in gene families of the ascorbate–glutathione cycle in wheat during mild water deficit. Plant Cell Rep 29:37–50

    Article  PubMed  Google Scholar 

  • Segev A, Badani H, Kapulnik Y, Shomer I, Oren-Shamir M, Galili S (2010) Determination of polyphenols, flavonoids, and antioxidant capacity in colored chickpea (Cicer arietinum L.). J Food Sci 75:115–119

    Article  Google Scholar 

  • Smith IK, Vierhaller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5′dithiobis(2-nitrobenzoic acid). Anal Biochem 175:408–413

    Article  CAS  PubMed  Google Scholar 

  • Sreerama YN, Sashikala VB, Pratape VM (2010) Variability in the distribution of phenolic compounds in milled fractions of chickpea and horse gram: evaluation of their antioxidant properties. J Agric Food Chem 58:8322–8330

    Article  CAS  PubMed  Google Scholar 

  • Talaat NB, Shawky BT (2013) Modulation of the ROS-scavenging system in salt-stressed wheat plants inoculated with arbuscular mycorrhizal fungi. J Plant Nutr Soil Sci 177(2):199–207

    Article  Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323

    Article  CAS  PubMed  Google Scholar 

  • Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157

    Article  CAS  Google Scholar 

  • Turan S, Tripathy BC (2013) Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. Protoplasma 250(1):209–222

    Article  CAS  PubMed  Google Scholar 

  • Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Article  Google Scholar 

  • Turner NC, Colmer TD, Quealy J, Pushpavalli R, Krishnamurthy L, Kaur J, Singh G, Siddique KHM, Vadez V (2013) Salinity tolerance and ion accumulation in chickpea (Cicer arietinum L.) subjected to salt stress. Plant Soil 365:347–361

    Article  CAS  Google Scholar 

  • Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184

    Article  CAS  PubMed  Google Scholar 

  • Vadassery J, Tripathi S, Prasad R, Varma A, Oelmüller R (2009) Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. J Plant Physiol 166:1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidative systems in acid rain treated bean plants. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Walkley A (1947) A critical examination of a rapid method for determining organic carbon in soils: effects of variations in digestion conditions and of organic soil constituents. Soil Sci 63:251–264

    Article  CAS  Google Scholar 

  • Wilde P, Manal A, Stodden M, Sieverding E, Hildebrandt U, Bothe H (2009) Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environ Microbiol 11:1548–1561

    Article  PubMed  Google Scholar 

  • Xu C, Sullivan JH, Garret WM, Caperna TJ, Natarajan S (2008) Impact of solar ultraviolet-B on the proteome in soybean lines differing in flavonoid contents. Phytochemistry 69:38–48

    Article  CAS  PubMed  Google Scholar 

  • Yousuf PY, Hakeem KUR, Chandna R, Ahmad P (2012) Role of glutathione reductase in plant abiotic stress. In: Ahmad P, Prasad MNV (eds) abiotic stress responses in plants: metabolism, productivity and sustainability, doi:10.1007/978-1-4614-0634-1_8, Springer Science + Business Media, LLC, New York.

Download references

Acknowledgments

We gratefully acknowledge the INSPIRE program, Department of Science and Technology (DST), Ministry of Science and Technology, Government of India for providing financial support in undertaking the present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neera Garg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 227836 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, N., Singla, P. Naringenin- and Funneliformis mosseae-Mediated Alterations in Redox State Synchronize Antioxidant Network to Alleviate Oxidative Stress in Cicer arietinum L. Genotypes Under Salt Stress. J Plant Growth Regul 34, 595–610 (2015). https://doi.org/10.1007/s00344-015-9494-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-015-9494-9

Keywords

Navigation