Skip to main content
Log in

NO and IAA Key Regulators in the Shoot Growth Promoting Action of Humic Acid in Cucumis sativus L.

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Previous studies have reported that a purified sedimentary humic acid (PHA) was able to increase the concentration of nitric oxide (NO), indole-acetic acid (IAA) and ethylene in cucumber roots. Here, we investigated if these effects are functionally related to the ability of PHA to improve shoot growth. The effect of specific inhibitors of NO, IAA and ethylene functionality and signaling on PHA-induced shoot growth was studied. Likewise, the effect of these inhibitors on the synthesis and activity of the phytoregulators concerned by PHA action in cucumber roots was also explored. The results show that shoot growth promoted by PHA is due to an increase of IAA concentration in the root through both a NO-dependent and a NO-independent pathway. In addition, the increased ethylene production in the root is regulated by an IAA-dependent pathway. Finally, results also showed that the increase of ABA concentration in the root is regulated through both IAA- and ethylene-dependent pathways. In summary, the shoot growth promoting action of PHA involves a complex hormonal network. On one hand, the PHA action is functionally linked to increments in NO and IAA concentration in roots. And on the other hand, PHA action also increases ethylene and ABA root concentration mediated by NO-IAA dependent pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguirre E, Lemenager D, Bacaicoa E, Fuentes M, Baigorri R, Zamarreno AM, Garcia-Mina JM (2009) The root application of a purified leonardite humic acid modifies the transcriptional regulation of the main physiological root responses to Fe deficiency in Fe-sufficient cucumber plants. Plant Physiol Biochem 47(3):215–223

    Article  CAS  PubMed  Google Scholar 

  • Arteca RN, Arteca JM (2008) Effects of brassinosteroid, auxin, and cytokinin on ethylene production in Arabidopsis thaliana plants. J Exp Bot 59(11):3019–3026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bacaicoa E, Zamarreno AM, Lemenager D, Baigorri R, Garcia-Mina JM (2009) Relationship between the hormonal balance and the regulation of iron deficiency stress responses in cucumber. J Am Soc Hortic Sci 134:589–601

    Google Scholar 

  • Bacaicoa E, Mora V, Zamarreno AM, Fuentes M, Casanova E, Garcia-Mina JM (2011) Auxin: a major player in the shoot-to-root regulation of root Fe-stress physiological responses to Fe deficiency in cucumber plants. Plant Physiol Biochem 49(5):545–556

    Article  CAS  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (2001) Nitric oxide: a non-traditional regulator of plant growth. Trends Plant Sci 6(11):508–509

    Article  CAS  PubMed  Google Scholar 

  • Canellas LP, Lopes Olivares F, Okorokova-Façanha AL, RF L (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence and plasma membrane H+-ATPase activity in maize roots. Plant Physiol 130:1951–1957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Canellas LP, Piccolo A, Dobbss LB, Spaccini R, Olivares FL, Zandonadi DB, Facanha AR (2010) Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid. Chemosphere 78(4):457–466

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, De Nobili M, Aviad T (2004) Stimulatory effects of humic substances on plant growth. In: Magdoff F, Weil R (eds) Soil organic matter in sustainable agriculture. CRC Press, Boca Raton, pp 103–129

    Google Scholar 

  • Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ (2010) Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiol 154(2):810–819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218(6):900–905

    Article  CAS  PubMed  Google Scholar 

  • Davies PJ (1995) Plant hormones, physiology, biochemistry and molecular biology, 2nd edn. Kluwer, Dortrecht

    Google Scholar 

  • De Santiago A, Delgado A (2007) Effects of humic substances on iron nutrition of lupin. Biol Fertil Soils 43:829–836

    Article  Google Scholar 

  • DeMason DA, Chawla R (2004) Roles for auxin during morphogenesis of the compound leaves of pea (Pisum sativum). Planta 218(3):435–448

    Article  CAS  PubMed  Google Scholar 

  • Dobbss LB, Medici LO, Peres LEP, Pino-Nunes LE, Rumjanek VM (2007) Changes in root development of Arabidopsis promoted by organic matter from oxisols. Ann Appl Biol 151:199–211

    Article  CAS  Google Scholar 

  • Dobrev PI, Kaminek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A 950(1–2):21–29

    Article  PubMed  Google Scholar 

  • García-Mina JM, Antolín MC, Sanchez-Diaz M (2004) Metal-humic complexes and plant micronutrient uptake: a study based on different plant species cultivated in diverse soil types. Plant Soil 258:57–68

    Article  Google Scholar 

  • Garnica M, Houdusse F, Claude Yvin J, Garcia-Mina JM (2009) Nitrate supply induces changes in polyamine content and ethylene production in wheat plants grown with ammonium. J Plant Physiol 166(4):363–374

    Article  CAS  PubMed  Google Scholar 

  • Graziano M, Lamattina L (2005) Nitric oxide and iron in plants: an emerging and converging story. Trends Plant Sci 10(1):4–8

    Article  CAS  PubMed  Google Scholar 

  • Hager A (2003) Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. J Plant Res 116(6):483–505

    Article  CAS  PubMed  Google Scholar 

  • Hussain A, Black CR, Taylor IB, Roberts JA (2000) Does an antagonistic relationship between ABA and ethylene mediate shoot growth when tomato (Lycopersicum esculetum Mill.) plants encounter compacted soil? Plant Cell Environ 23:1217–1226

    Article  CAS  Google Scholar 

  • Jannin L, Arkoun M, Ourry A, Laîné P, Goux D, Garnica M, Fuentes M, San Francisco S, Baigorri R, Cruz F, Houdusse F, García-Mina JM, Yvin JC, Etienne P (2012) Microarray analysis of humic acid effects on Brassica napus growth: involvement of N, C and S metabolisms. Plant Soil 359(1–2):297–319

    Article  CAS  Google Scholar 

  • Jin CW, Du ST, Shamsi IH, Luo BF, Lin XY (2011) NO synthase-generated NO acts downstream of auxin in regulating Fe-deficiency-induced root branching that enhances Fe-deficiency tolerance in tomato plants. J Exp Bot 62(11):3875–3884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jindo K, Martim SA, Navarro EC, Pérez-Alfocea F, Hernandez T, Garcia C, Aguiar NO, Canellas LP (2012) Root growth promoting by humic acids from composted and non-composted urban organic wastes. Plant Soil 353:209–220

    Article  CAS  Google Scholar 

  • Lau OL, Yang SF (1976) Inhibition of ethylene production by cobaltous ion. Plant Physiol 58(1):114–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Locke JM, Bryce JH, Morris PC (2000) Contrasting effects of ethylene perception and biosynthesis inhibitors on germination and seedling growth of barley (Hordeum vulgare L.). J Exp Bot 51(352):1843–1849

    Article  CAS  PubMed  Google Scholar 

  • Lucena C, Waters BM, Romera FJ, García MJ, Morales M, Alcántara E, Pérez-Vicente R (2006) Ethylene could influence ferric reductase, iron transporter, and H+-ATPase gene expression by affecting FER (or FER-like) gene activity. J Exp Bot 57(15):4145–4154

    Article  CAS  PubMed  Google Scholar 

  • Mahdieh M, Mostajeran A (2009) Abscisic acid regulates root hydraulic conductance via aquaporin expression modulation in Nicotiana tabacum. J Plant Physiol 166(18):1993–2003

    Article  CAS  PubMed  Google Scholar 

  • Michelet B, Boutry M (1995) The Plasma Membrane H+-ATPase (A highly regulated enzyme with multiple physiological functions). Plant Physiol 108(1):1–6

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mora V (2010) Relaciones existentes entre la acción de las sustancias húmicas sobre el desarrollo vegetal y la síntesis endógena de los principales fitorreguladores. PhD Thesis, Chemistry and Soil Chemistry, University of Navarra, Pamplona

  • Mora V, Bacaicoa E, Zamarreno AM, Aguirre E, Garnica M, Fuentes M, Garcia-Mina JM (2010) Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients. J Plant Physiol 167(8):633–642

    Article  CAS  PubMed  Google Scholar 

  • Mora V, Baigorri R, Bacaicoa E, Zamarreno AM, Garcia-Mina JM (2012) The humic acid-induced changes in the root concentration of nitric oxide, IAA and ethylene do not explain the changes in root architecture caused by humic acid in cucumber. Environ Exp Bot 76:24–32

    Article  CAS  Google Scholar 

  • Morsomme P, Boutry M (2000) The plant plasma membrane H(+)-ATPase: structure, function and regulation. Biochim Biophys Acta 1465(1–2):1–16

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Cramer GR (1996) Is coordination of leaf and root growth mediated by abscisic acid? Opinion. Plant Soil 185:33–49

    Article  CAS  Google Scholar 

  • Muscolo A, Cutrupi S, Nardi S (1998) IAA detection in humic substances. Soil Biol Biochem 30(8/9):1199–1201

    Article  CAS  Google Scholar 

  • Muscolo A, Sidari M, Nardi S (2013) Humic substance: relationship between structure and activity. Deeper information suggest univocal findings. J Geochem Explor 129:57–63

    Article  CAS  Google Scholar 

  • Nardi S, Concheri G, Dell’Agnola G, Scrimin P (1991) Nitrate uptake and ATPase activity in oat seedlings in the presence of two humic fractions. Soil Biol Biochem 23(9):833–836

    Article  CAS  Google Scholar 

  • Nardi S, Pizzeghello D, Muscolo A, Vianello A (2002) Physiological effects of humic substances on higher plants. Soil Biol Biochem 34(11):1527–1536

    Article  CAS  Google Scholar 

  • Oono Y, Ooura C, Rahman A, Aspuria ET, Hayashi K, Tanaka A, Uchimiya H (2003) p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiol 133(3):1135–1147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129(3):954–956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palmgren MG (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845

    Article  CAS  PubMed  Google Scholar 

  • Pinton R, Cesco S, Iacolettig G, Astolfi S, Varanini Z (1999a) Modulation of NO3 uptake by water-extractable humic substances: involvement of root plasma membrane H+-ATPase. Plant Soil 215(2):155–161

    Article  CAS  Google Scholar 

  • Pinton R, Cesco S, Santi S, Agnolon F, Varanini Z (1999b) Water-extractable humic substances enhance iron deficiency responses by Fe-deficient cucumber plants. Plant Soil 210(2):145–157

    Article  CAS  Google Scholar 

  • Pizzeghello D, Francioso O, Ertani A, Muscolo A, Nardi S (2013) Isopentenyladenosine and cytokinin-like activity of different humic substances. J Geochem Explor 129:70–75

    Article  CAS  Google Scholar 

  • Quaggiotti S, Ruperti B, Pizzeghello D, Francioso O, Tugnoli V, Nardi S (2004) Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). J Exp Bot 55(398):803–813

    Article  CAS  PubMed  Google Scholar 

  • Rahman A, Amakawa T, Goto N, Tsurumi S (2001) Auxin is a positive regulator for ethylene-mediated response in the growth of Arabidopsis roots. Plant Cell Physiol 42(3):301–307

    Article  CAS  PubMed  Google Scholar 

  • Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S (2002) Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiol 130(4):1908–1917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rober-Kleber N, Albrechtová JTP, Fleig S, Huck N, Michalke W, Wagner E, Speth V, Neuhaus G, Fischer-Iglesias C (2003) Plasma membrane H+-ATPase is involved in auxin-mediated cell elongation during wheat embryo development. Plant Physiol 131:1302–1312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Romera FJ, Alcantara E, Guardia MD (1999) Ethylene production by Fe-deficient roots and its involvement in the regulation of Fe-deficiency stress responses by strategy I plants. Ann Bot 83(1):51–55

    Article  CAS  Google Scholar 

  • Romera FJ, Garcia MJ, Alcantara E, Perez-Vicente R (2011) Latest findings about the interplay of auxin, ethylene and nitric oxide in the regulation of Fe deficiency responses by Strategy I plants. Plant Signal Behav 6(1):167–170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmidt W, Santi S, Pinton R, Varanini Z (2007) Water-extractable humic substances alter root development and epidermal cell pattern in Arabidopsis. Plant Soil 300(1–2):259–267

    Article  CAS  Google Scholar 

  • Sharp RE (2002) Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant, Cell Environ 25(2):211–222

    Article  CAS  Google Scholar 

  • Sondergaard TE, Schulz A, Palmgren MG (2004) Energization of transport processes in plants: roles of the plasma membrane H+-ATPase. Plant Physiol 136(1):2475–2482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spollen WG, LeNoble ME, Samuels TD, Bernstein N, Sharp RE (2000) Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiol 122(3):967–976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sze H, Li X, Palmgren MG (1999) Energization of plant cell membranes by H+-pumping ATPases: regulation and biosynthesis. Plant Cell 11(4):677–690

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tomasi N, Rizzardo C, Monte R, Gottardi S, Jelali N, Terzano R, Vekemans B, DeNobili M, Varanini Z, Pinton R, Cesco S (2009) Micro-analytical, physiological and molecular aspects of Fe acquisition in leaves of Fe-deficient tomato plants re-supplied with natural Fe-complexes in nutrient solution. Plant Soil 325:25–38

    Article  CAS  Google Scholar 

  • Trevisan S, Pizzeghello D, Ruperti B, Francioso O, Sassi A, Palme K, Quaggiotti S, Nardi S (2009) Humic substances induce lateral root formation and expression of the early auxin-responsive IAA19 gene and DR5 synthetic element in Arabidopsis. Plant Biol 12(4):604–614

    Google Scholar 

  • Trevisan S, Francioso O, Quaggiotti S, Nardi S (2010) Humic substances biological activity at the plant-soil interface: from environmental aspects to molecular factors. Plant Signal Behav 5(6):635–643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsuchisaka A, Theologis A (2004) Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol 136(2):2982–3000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vernoux T, Besnard F, Traas J (2010) Auxin at the shoot apical meristem. Cold Spring Harb Perspect Biol 2(4):a001487

    Article  PubMed Central  PubMed  Google Scholar 

  • Waters BM, Lucena C, Romera FJ, Jester GG, Wynn AN, Rojas CL, Alcantara E, Perez-Vicente R (2007) Ethylene involvement in the regulation of the H(+)-ATPase CsHA1 gene and of the new isolated ferric reductase CsFRO1 and iron transporter CsIRT1 genes in cucumber plants. Plant Physiol Biochem 45(5):293–301

    Article  CAS  PubMed  Google Scholar 

  • Zandonadi DB, Canellas LP, Facanha AR (2007) Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta 225(6):1583–1595

    Article  CAS  PubMed  Google Scholar 

  • Zandonadi DB, Santos MP, Dobbss LB, Olivares FL, Canellas LP, Binzel ML, Okorokova-Facanha AL, Facanha AR (2010) Nitric oxide mediates humic acids-induced root development and plasma membrane H+-ATPase activation. Planta 231(5):1025–1036

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang L, Liu Y, Zhang Q, Wei Q, Zhang W (2006) Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224:545–555

    Article  CAS  PubMed  Google Scholar 

  • Zhao LQ, Zhang F, Guo JK, Yang YL, Li BB, Zhang LX (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134:849–857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research has been supported by both Roullier Group and grants from CDTI and Government of Navarra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Baigorri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mora, V., Bacaicoa, E., Baigorri, R. et al. NO and IAA Key Regulators in the Shoot Growth Promoting Action of Humic Acid in Cucumis sativus L.. J Plant Growth Regul 33, 430–439 (2014). https://doi.org/10.1007/s00344-013-9394-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-013-9394-9

Keywords

Navigation