Skip to main content
Log in

The Ethylene Signaling Pathway is Needed to Restrict Root Gall Growth in Arabidopsis after Infection with the Obligate Biotrophic Protist Plasmodiophora brassicae

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

A possible role for ethylene in the interaction of Arabidopsis thaliana and the obligate biotrophic protist Plasmodiophora brassicae, causing clubroot disease, has been investigated. The ethylene (ET) precursor 1-aminocyclopropane-1-carboxylic acid (ACC) was lower in infected compared to control roots during early time points of the interaction. We therefore analyzed the transcription of selected genes encoding proteins involved in ET synthesis. One gene for ACC oxidase was consistently upregulated in infected roots, whereas transcriptional regulation of other ET biosynthesis genes varied according to the time point during infection. The ET-overproducing mutant eto2 was slightly less susceptible to the clubroot pathogen. The analysis of mutants within the ET signaling pathway showed that they were more susceptible to the clubroot pathogen than wild-type Columbia, that is, they formed larger galls. The findings are discussed in relation to a potential effect of ET on Arabidopsis root infection by P. brassicae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abel S, Nguyen MD, Chow W, Theologis A (1995) ACS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana. J Biol Chem 270:19093–19099

    Article  PubMed  CAS  Google Scholar 

  • Adie B, Chico JM, Rubio-Somoza I, Solano R (2007) Modulation of plant defenses by ethylene. J Plant Growth Regul 26:160–177

    Article  CAS  Google Scholar 

  • Agarwal A, Kaul V, Faggian R, Rookes JE, Ludwig-Müller J, Cahill DM (2011) Analysis of host gene expression during the primary phase of the Arabidopsis thalianaPlasmodiophora brassicae interaction. Funct Plant Biol 38:462–478

    CAS  Google Scholar 

  • Alix K, Lariagon C, Delourme R, Manzanares-Dauleux MJ (2007) Exploiting natural genetic diversity and mutant resources of Arabidopsis thaliana to study the A. thaliana–Plasmodiophora brassicae interaction. Plant Breed 126:218–221

    Article  Google Scholar 

  • An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, Zhang C, Han Y, He W, Liu Y, Zhang S, Ecker JR, Guo H (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-like1 is mediated by proteasomal degradation of EIN3 binding f-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22:2384–2401

    Article  PubMed  CAS  Google Scholar 

  • Beckman CH (2000) Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol Mol Plant Pathol 57:101–110

    Article  CAS  Google Scholar 

  • Berrocal-Lobo M, Molina A, Solano R (2002) Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 29:23–32

    Article  PubMed  CAS  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–8

    Article  PubMed  CAS  Google Scholar 

  • Bleecker AB, Estelle MA, Sommerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089

    Article  PubMed  CAS  Google Scholar 

  • Boutrot F, Segonzac C, Chang KN, Qiao H, Ecker JR, Zipfel C, Rathjen JP (2010) Direct transcriptional control of the Arabidopsis immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1. Proc Natl Acad Sci USA 107:14502–14507

    Article  PubMed  CAS  Google Scholar 

  • Buczacki ST, Moxham SE (1979) A triple stain for differentiating resin-embedded sections of Plasmodiophora brassicae in host tissues under light microscope. Trans Br Mycol Soc 72:311–347

    Article  Google Scholar 

  • Camehl I, Sherameti I, Venus Y, Bethke G, Varma A, Lee J, Oelmüller R (2010) Ethylene signaling and ethylene-targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis between the endophytic fungus Piriformospora indica and Arabidopsis thaliana. New Phytol 185:1062–1073

    Article  PubMed  CAS  Google Scholar 

  • Chae HS, Kieber JJ (2005) Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci 10:291–296

    Article  PubMed  CAS  Google Scholar 

  • Chae HS, Faure F, Kieber JJ (2003) The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell 15:545–559

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Stadler R (2001) Ethylene hormone receptor action in Arabidopsis. Bioessays 23:619–627

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544

    Article  PubMed  CAS  Google Scholar 

  • Chao QM, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89:1133–1144

    Article  PubMed  CAS  Google Scholar 

  • Chen YF, Shakeel SN, Bowers J, Zhao XC, Etheridge N, Schaller GE (2007) Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome-dependent pathway in Arabidopsis. J Biol Chem 282:24752–24758

    Article  PubMed  CAS  Google Scholar 

  • Christians MJ, Gingerich DJ, Hansen M, Binder BM, Kieber JJ, Vierstra RD (2009) The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant J 57:332–345

    Article  PubMed  CAS  Google Scholar 

  • Cohen JD, Baldi BG, Slovin JP (1986) 13C6-[benzene ring]-indole-3-acetic acid: a new internal standard for quantitative mass spectral analysis of indole-3-acetic acid in plants. Plant Physiol 80:14–19

    Article  PubMed  CAS  Google Scholar 

  • Devos S, Vissenberg K, Verbelen JP, Prinsen E (2005) Infection of Chinese cabbage by Plasmodiophora brassicae leads to a stimulation of plant growth: impacts on cell wall metabolism and hormone balance. New Phytol 166:241–250

    Article  PubMed  CAS  Google Scholar 

  • Devos S, Laukens K, Deckers P, Van Der Straeten D, Beeckman T, Inze D, van Onckelen H, Witters E, Prinsen E (2006) A hormone and proteome approach to picturing the initial metabolic events during Plasmodiophora brassicae infection on Arabidopsis. Mol Plant Microbe Interact 19:1431–1433

    Article  PubMed  CAS  Google Scholar 

  • Diaz J, ten Havew A, van Kan JA (2002) The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Plant Physiol 129:1341–1351

    Article  PubMed  CAS  Google Scholar 

  • Fähling M, Graf H, Siemens J (2003) Pathotype separation of Plasmodiophora brassicae by the host plant. J Phytopathol 151:425–430

    Article  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  PubMed  CAS  Google Scholar 

  • Grsic-Rausch S, Kobelt P, Siemens J, Bischoff M, Ludwig-Müller J (2000) Expression and localization of nitrilase during symptom development of the clubroot disease in Arabidopsis thaliana. Plant Physiol 122:369–378

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49

    Article  PubMed  CAS  Google Scholar 

  • Hall AE, Bleecker AB (2003) Analysis of combinatorial loss-of-function mutants in the Arabidopsis ethylene receptors reveals that the ers1 etr1 double mutant has severe developmental defects that are EIN2 dependent. Plant Cell 15:2032–2041

    Article  PubMed  CAS  Google Scholar 

  • Hansen M, Chae HS, Kieber JJ (2009) Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant J 57:606–614

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Chang C, Sun Q, Meyerowitz EM (1995) Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269:1712–1714

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, Meyerowitz EM (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10:1321–1332

    PubMed  CAS  Google Scholar 

  • Jäschke D, Dugassa-Gobena D, Karlovsky P, Vidal S, Ludwig-Müller J (2010) Suppression of clubroot (Plasmodiophora brassicae) development in Arabidopsis thaliana by the endophytic fungus Acremonium alternatum. Plant Pathol 59:100–111

    Article  Google Scholar 

  • Johnson PR, Ecker JR (1998) The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet 32:227–254

    Article  PubMed  CAS  Google Scholar 

  • Kamo T, Hirai N, Tsuda M, Fujioka D, Ohigashi H (2000) Changes in the content and biosynthesis of phytoalexins in banana fruit. Biosci Biotechnol Biochem 64:2089–2098

    Article  PubMed  CAS  Google Scholar 

  • Kendrick MD, Chang C (2008) Ethylene signaling: new levels of complexity and regulation. Curr Opin Plant Biol 11:479–485

    Article  PubMed  CAS  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427–441

    Article  PubMed  CAS  Google Scholar 

  • Liang X, Abel S, Keller JA, Shen NF, Theologis A (1992) The 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana. Proc Natl Acad Sci USA 89:11046–11050

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, Zhong S, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60:3311–3336

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signaling network. Curr Opin Plant Biol 8:532–540

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178

    Article  PubMed  CAS  Google Scholar 

  • Ludwig-Müller J (2009) Plant defence—what can we learn from clubroots? Australas Plant Pathol 38:318–324

    Article  Google Scholar 

  • Ludwig-Müller J, Prinsen E, Rolfe S, Scholes J (2009) Metabolism and plant hormone action during the clubroot disease. J Plant Growth Regul 28:229–244

    Article  Google Scholar 

  • McClellan CA, Chang C (2008) The role of protein turnover in ethylene biosynthesis and response. Plant Sci 175:24–31

    Article  PubMed  CAS  Google Scholar 

  • Nakazato Y, Tamogami S, Kawai H, Hasegawa M, Kodama O (2000) Methionine-induced phytoalexin production in rice leaves. Biosci Biotechnol Biochem 64:577–583

    Article  PubMed  CAS  Google Scholar 

  • Olmedo G, Guo H, Gregory BD, Nourizadeh SD, Aguilar-Henonin L, Li H, An F, Guzman P, Ecker JR (2006) ETHYLENE-INSENSITIVE5 encodes a 5′>3′ exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2. Proc Natl Acad Sci USA 103:13286–13293

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CM, van Wees SC, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    PubMed  CAS  Google Scholar 

  • Potuschak T, Vansiri A, Binder BM, Lechner E, Vierstra RD, Genschik P (2006) The exoribonuclease XRN4 is a component of the ethylene response pathway in Arabidopsis. Plant Cell 18:3047–3057

    Article  PubMed  CAS  Google Scholar 

  • Qiao H, Chang KN, Yazaki J, Ecker JR (2009) Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev 23:512–521

    Article  PubMed  CAS  Google Scholar 

  • Rojo E, Solano R, Sanchez-Serrano JJ (2003) Interactions between signaling compounds involved in plant defense. J Plant Growth Regul 22:82–98

    Article  CAS  Google Scholar 

  • Sakai H, Hua J, Qhg C, Cr C, Lj M, Ab B, Em M (1998) ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 95:5812–5817

    Article  PubMed  CAS  Google Scholar 

  • Shinshi H (2008) Ethylene-regulated transcription and crosstalk with jasmonic acid. Plant Sci 175:18–23

    Article  CAS  Google Scholar 

  • Siemens J, Nagel M, Ludwig-Müller J, Sacristan MD (2002) The interaction of Plasmodiophora brassicae and Arabidopsis thaliana: parameters for disease quantification and screening of mutant lines. J Phytopathol 150:592–605

    Article  Google Scholar 

  • Siemens J, Keller I, Sarx J, Kunz S, Schuller A, Nagel W, Schmülling T, Parniske M, Ludwig-Müller J (2006) Transcriptome analysis of Arabidopsis clubroots and disease resistance of cytokinin oxidase/dehydrogenase gene overexpressing plants indicate a key role for cytokinin in disease development. Mol Plant Microbe Interact 19:480–494

    Article  PubMed  CAS  Google Scholar 

  • Siemens J, Graf H, Bulman S, In O, Ludwig-Müller J (2009) Monitoring expression of selected Plasmodiophora brassicae genes during clubroot development in Arabidopsis thaliana. Plant Pathol 58:130–136

    Article  CAS  Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703–3714

    Article  PubMed  CAS  Google Scholar 

  • Stepanova AN, Ecker JR (2000) Ethylene signaling: from mutants to molecules. Curr Opin Plant Biol 3:353–360

    Article  PubMed  CAS  Google Scholar 

  • Thomma B, Eggermont K, Penninckx I, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111

    Article  PubMed  CAS  Google Scholar 

  • Thomma BP, Nelissen I, Eggermont K, Broekaert WF (1999) Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J 19:163–171

    Article  PubMed  CAS  Google Scholar 

  • Tieman DM, Ciardi JA, Taylor MG, Klee HJ (2001) Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J 26:47–58

    Article  PubMed  CAS  Google Scholar 

  • van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Van Wees SC, Van der Ent S, Pieterse CM (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Article  PubMed  Google Scholar 

  • Vandenbussche F, Smalle J, Le J, Saibo NJM, De Paepe A, Chaerle L, Tietz O, Smets R, Laarhoven LJJ, Harren FJM, Van Onckelen H, Palme K, Verbelen J-P, Van Der Straeten D (2003) The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin. Plant Physiol 131:1228–1238

    Article  PubMed  CAS  Google Scholar 

  • Vogel JP, Woeste KE, Theologis A, Kieber JJ (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci USA 95:4766–4771

    Article  PubMed  CAS  Google Scholar 

  • Wang KL, Yoshida H, Lurin C, Ecker JR (2004) Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428:945–950

    Article  PubMed  CAS  Google Scholar 

  • Wu L-y, Siemens J, Li S-k, Ludwig-Müller J, Gong Y-j, Zhong L, He J-m (2012) Estimating Plasmodiophora brassicae gene expression in lines of B. rapa by RT-PCR. Sci Hort 133:1–5

    Article  CAS  Google Scholar 

  • Wubben MJE, Su H, Rodermel SR, Baum TJ (2001) Susceptibility to the sugar beet cyst nematode is modulated by ethylene signal transduction in Arabidopsis thaliana. Mol Plant Microbe Interact 14:1206–1212

    Article  PubMed  CAS  Google Scholar 

  • Yang SF, Hoffmann NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jutta Ludwig-Müller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 504 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knaust, A., Ludwig-Müller, J. The Ethylene Signaling Pathway is Needed to Restrict Root Gall Growth in Arabidopsis after Infection with the Obligate Biotrophic Protist Plasmodiophora brassicae . J Plant Growth Regul 32, 9–21 (2013). https://doi.org/10.1007/s00344-012-9271-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-012-9271-y

Keywords

Navigation