Skip to main content
Log in

Ca2+ and CaM are Involved in NO- and H2O2-Induced Adventitious Root Development in Marigold

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Our previous results have demonstrated that both nitric oxide (NO) and hydrogen peroxide (H2O2) are involved in the promotion of adventitious root development in marigold (Tagetes erecta L.). However, not much is known about the intricate molecular network of adventitious root development triggered by NO and H2O2. In this study, the involvement of calcium (Ca2+) and calmodulin (CaM) in NO- and H2O2-induced adventitious rooting in marigold was investigated. Exogenous Ca2+ was capable of promoting adventitious rooting, with a maximal biological response at 50 μM CaCl2. Ca2+ chelators and CaM antagonists prevented NO- and H2O2-induced adventitious rooting, indicating that both endogenous Ca2+ and CaM may play crucial roles in the adventitious rooting induced by NO and H2O2. NO and H2O2 treatments increased the endogenous content of Ca2+ and CaM, suggesting that NO and H2O2 enhanced adventitious rooting by stimulating the endogenous Ca2+ and CaM levels. Moreover, treatment with Ca2+ enhanced the endogenous levels of NO and H2O2. Additionally, Ca2+ might be involved as an upstream signaling molecule for CaM during NO- and H2O2-induced rooting. Altogether, the results suggest that both Ca2+ and CaM are two downstream signaling molecules in adventitious rooting induced by NO and H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, von Bodman S, Berkowitz GA (2007) Death don’t have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity. Plant Cell 19:1081–1095

    Article  PubMed  CAS  Google Scholar 

  • Bellamine J, Penel C, Greppin H, Gaspar T (1998) Confirmation of the role of auxin and calcium in the late phases of adventitious root formation. Plant Growth Regul 26:191–194

    Article  CAS  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    Article  PubMed  CAS  Google Scholar 

  • Blume B, Nürnberger T, Nass N, Scheel D (2000) Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defence in parsley. Plant Cell 12:1425–1440

    Article  PubMed  CAS  Google Scholar 

  • Bouché N, Yellin A, Snedden WA, Fromm H (2005) Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol 56:435–466

    Article  PubMed  Google Scholar 

  • Bush DS (1996) Effects of gibberellic acid and environmental factors on cytosolic calcium in wheat aleurone cells. Planta 199:89–99

    Article  CAS  Google Scholar 

  • Correa-Aragunde NM, Graziano ML, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905

    Article  PubMed  CAS  Google Scholar 

  • Courtois C, Besson A, Dahan J, Bourque S, Dobrowolska G, Pugin A, Wendehenne D (2008) Nitric oxide signalling in plants: interplays with Ca2+ and protein kinases. J Exp Bot 59:155–163

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459

    Article  PubMed  CAS  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  PubMed  CAS  Google Scholar 

  • Falasca G, Zaghi D, Possenti M, Altamura MM (2004) Adventitious root formation in Arabidopsis thaliana thin cell layers. Plant Cell Rep 23:17–25

    Article  PubMed  CAS  Google Scholar 

  • Frohnmeyer H, Loyall L, Blatt MR, Grabov A (1999) Millisecond UV-B irradiation evokes prolonged elevation of cytosolic free Ca2+ and stimulates gene expression in transgenic parsley cell cultures. Plant J 20:109–117

    Article  PubMed  CAS  Google Scholar 

  • García-Mata C, Gay R, Sokolovki S, Hills A, Lamattina L, Blatt MR (2003) Nitric oxide regulates K+ and Cl channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci USA 100:11116–11121

    Article  PubMed  Google Scholar 

  • Gong M, van der Luit AH, Knight MR, Trewavas AJ (1998) Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedling in relation to thermotolerance. Plant Physiol 116:429–437

    Article  CAS  Google Scholar 

  • He JM, Xu H, She XP, Song XG, Zhao WM (2005) The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean. Funct Plant Biol 32:237–247

    Article  CAS  Google Scholar 

  • Hu X, Jiang MY, Zhang JH, Zhang AY, Lin F, Tan MP (2007) Calcium–calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytol 173:27–38

    Article  PubMed  CAS  Google Scholar 

  • Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526

    Article  PubMed  CAS  Google Scholar 

  • Lamotte O, Gould K, Lecourieux D, Sequeira-Legrand A, Lebrun-García A, Durner J, Pugin A, Wendehenne D (2004) Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol 135:516–529

    Article  PubMed  CAS  Google Scholar 

  • Lamotte O, Courtois C, Dobrowolska G, Besson A, Pugin A, Wendehenne D (2006) Mechanisms of nitric-oxide-induced increase of free cytosolic Ca2+ concentration in Nicotiana plumbaginifolia cells. Free Radic Biol Med 40:1369–1376

    Article  PubMed  CAS  Google Scholar 

  • Lanteri ML, Pagnussat GC, Lamattina L (2006) Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber. J Exp Bot 57:1341–1351

    Article  PubMed  CAS  Google Scholar 

  • Lanteri ML, Laxalt AM, Lamattina L (2008) Nitric oxide triggers phosphatidic acid accumulation via phospholipase d during auxin-induced adventitious root formation in cucumber. Plant Physiol 147:188–198

    Article  PubMed  CAS  Google Scholar 

  • Lecourieux D, Ranjeva R, Pugin A (2006) Calcium in plant defence-signalling pathways. New Phytol 171:249–269

    Article  PubMed  CAS  Google Scholar 

  • Li SW, Xue LG, Xu SJ, Feng HY, An LZ (2009) Hydrogen peroxide acts as a signal molecule in the adventitious root formation of mung bean seedlings. Environ Exp Bot 65:63–71

    Article  CAS  Google Scholar 

  • Liao WB, Xiao HL, Zhang ML (2009) Role and relationship of nitric oxide and hydrogen peroxide in adventitious root development of marigold. Acta Physiol Plant 31:1279–1289

    Article  CAS  Google Scholar 

  • Liao WB, Xiao HL, Zhang ML (2010) Effect of nitric oxide and hydrogen peroxide on adventitious root development from cuttings of ground-cover chrysanthemum and associated biochemical changes. J Plant Growth Regul 29:338–348

    Article  CAS  Google Scholar 

  • Liao WB, Huang GB, Yu JH, Zhang ML, Shi XL (2011) Nitric oxide and hydrogen peroxide are involved in indole-3-butyric acid-induced adventitious root development in marigold. J Hortic Sci Biotechnol 86:159–165

    CAS  Google Scholar 

  • Lombardo MC, Graziano ML, Polacco JC, Lamattina L (2006) Nitric oxide functions as a positive regulator of root hair development. Plant Signal Behav 1:28–33

    Article  PubMed  Google Scholar 

  • Lozano-Juste J, León J (2010) Enhanced abscisic acid-mediated responses in nia1nia2noa1-2 triple mutant impaired in NIA/NR- and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis. Plant Physiol 152:891–903

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Smigel A, Tsai Y, Braam J, Berkowitz GA (2008) Innate immunity signaling: cytosolic Ca2+ elevation is linked to downstream nitric oxide generation through the action of calmodulin or a calmodulin-like protein. Plant Physiol 148:818–828

    Article  PubMed  CAS  Google Scholar 

  • Maih QR, Read ND, Pais MS, Trewavas AJ (1994) Role of cytosolic free calcium in the reorientation of pollen tube growth. Plant J 5:331–341

    Article  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1242

    Article  PubMed  CAS  Google Scholar 

  • Orozco-Cárdenas ML, Ryan CA (2002) Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiol 130:487–493

    Article  PubMed  Google Scholar 

  • Pagnussat CG, Lanteri ML, Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132:1241–1248

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat CG, Lanteri ML, Lombardo MC, Lamattina L (2004) Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol 135:279–286

    Article  PubMed  CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  PubMed  CAS  Google Scholar 

  • Price AH, Taylor A, Ripley SJ, Griffiths A, Trewavas AJ, Knight MR (1994) Oxidative signals in tobacco increase cytosolic calcium. Plant Cell 6:1301–1310

    Article  PubMed  CAS  Google Scholar 

  • Ramírez-Carvajal GA, Morse AM, Dervinis C, Davis JM (2009) The cytokinin type-B response regulator PtRR13 is a negative regulator of adventitious root development in Populus. Plant Physiol 150:759–771

    Article  PubMed  Google Scholar 

  • Rao MV, Davis KR (2001) The physiology of ozone-induced cell death. Planta 213:682–690

    Article  PubMed  CAS  Google Scholar 

  • Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol 135:1471–1479

    Article  PubMed  CAS  Google Scholar 

  • Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR (2004) OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427:858–861

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627–658

    Article  PubMed  CAS  Google Scholar 

  • Smart DR, Kocsis L, Walker MA, Stockert C (2003) Dormant buds and adventitious root formation by Vitis and other woody plants. J Plant Growth Regul 21:296–314

    Article  Google Scholar 

  • Su GX, Zhang WH, Liu YL (2006) Involvement of hydrogen peroxide generated by polyamine oxidative degradation in the development of lateral roots in soybean. J Integr Plant Biol 48:426–432

    Article  CAS  Google Scholar 

  • Sun DY, Bian YQ, Zhao BH, Zhao LY, Yu XM, Duan SJ (1995) The effects of extracellular calmodulin on cell wall regeneration of protoplasts and cell division. Plant Cell Physiol 36:133–138

    CAS  Google Scholar 

  • Takabatake R, Karita E, Seo S, Mitsuhara I, Kuchitsu K, Ohashi Y (2007) Pathogen-induced calmodulin isoforms in basal resistance against bacterial and fungal pathogens in tobacco. Plant Cell Physiol 48:414–423

    Article  PubMed  CAS  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • Vandelle E, Poinssot B, Wendehenne D, Bentejac M, Pugin A (2006) Integrated signalling network involving calcium, nitric oxide, active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grapevine defenses. Mol Plant Microbe Interact 19:429–440

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Ries A, Wu K, Yang A, Crawford NM (2010) The Arabidopsis prohibitin gene PHB3 functions in nitric oxide-mediated responses and in hydrogen peroxide-induced nitric oxide accumulation. Plant Cell 22:249–259

    Article  PubMed  CAS  Google Scholar 

  • Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide: a new player in plant signalling and defence responses. Curr Opin Plant Biol 7:449–455

    Article  PubMed  CAS  Google Scholar 

  • Wodala B, Deak Z, Vass I, Erdei L, Altorjay I, Horvath F (2008) In vivo target sites of nitric oxide in photosynthetic electron transport as studied by chlorophyll fluorescence in pea leaves. Plant Physiol 146:1920–1927

    Article  PubMed  CAS  Google Scholar 

  • Xuan W, Zhu FY, Xu S, Huang BK, Ling TF, Qi JY, Ye MB, Shen WB (2008) The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process. Plant Physiol 148:881–893

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci USA 99:4097–4102

    Article  PubMed  CAS  Google Scholar 

  • Zhang WH, Rengel Z, Kuo J (1998) Determination of intracellular Ca2+ in cells of intact wheat roots: loading of acetoxymethyl ester of Fluo-3 under low temperature. Plant J 15:147–151

    Article  Google Scholar 

  • Zhang F, Wang YP, Yang YL, Wu H, Wang D, Liu JQ (2007) Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant Cell Environ 30:775–785

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 31160398), the Post Doctoral Foundation of China (No. 20100470887), the Key Project of the Chinese Ministry of Education (No. 211182), the Natural Science Foundation of Gansu Province, China (No. 1010RJZA211), and the Gansu Key Laboratory of Aridland Crop Science, Gansu Agricultural University, China. The authors are grateful to the editors and the anonymous reviewers for their valuable comments and help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Biao Liao or Mei-Ling Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, WB., Zhang, ML., Huang, GB. et al. Ca2+ and CaM are Involved in NO- and H2O2-Induced Adventitious Root Development in Marigold. J Plant Growth Regul 31, 253–264 (2012). https://doi.org/10.1007/s00344-011-9235-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-011-9235-7

Keywords

Navigation