Skip to main content
Log in

Heme Oxygenase is Involved in the Protection Exerted by Jasmonic Acid Against Cadmium Stress in Soybean Roots

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The present study was undertaken to test the influence of exogenously applied jasmonic acid (JA) upon the oxidative stress exerted by Cd in soybean plants. It was found that depending on its concentration, JA can improve plant antioxidant responses against Cd. Pretreatment with 20 μM JA effectively ameliorated Cd-induced oxidative stress as indicated by the decrease in thiobarbituric reactive substance (TBARS) levels, enhancement of glutathione (GSH) content, and diminution of H2O2 and O2 formation. On one hand, the activities of classic antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) were also augmented by JA treatment. This behavior was not observed in plants treated with Cd alone. On the other hand, 20 μM JA caused the enhancement of heme oxygenase (HO) activity (71% with respect to controls) and the amount of protein (60% with respect to controls). However, no gene induction was observed. Pretreatment with 20 μM JA before the addition of Cd provoked the highest values of HO activity and protein expression (138 and 122%, respectively). Once again, these enhancements were not correlated with transcript levels. Plants pretreated with Zn-protoporphyrin IX (ZnPPIX), a well-known irreversible HO-1 inhibitor, could not cope with the oxidative damage caused by Cd. This indicates that HO-1 is involved in the protection exerted by JA against the oxidative stress due to Cd treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–554

    Article  PubMed  CAS  Google Scholar 

  • Anjum SA, Wang L, Farooq M, Khan I, Xue L (2011) Methyl jasmonate-induced alteration in lipid peroxidation, antioxidative defence system and yield in soybean under drought. J Agron Crop Sci. doi:10.1111/j.1439-037X.2011.00468.x

  • Asada K (1999) The water cycle in chloroplast. Scavenging of active oxygens and dissipation of excess photons. Ann Rev Plant Biol 50:601–639

    Article  CAS  Google Scholar 

  • Balestrasse KB, Gardey L, Gallego SM, Tomaro ML (2001) Response of antioxidant defence system in soybean nodules and roots subjected to cadmium stress. Aust J Plant Physiol 28:497–504

    CAS  Google Scholar 

  • Balestrasse KB, Noriega GO, Batlle A, Tomaro ML (2005) Involvement of heme oxygenase as antioxidant defense in soybean nodules. Free Radic Res 39:145–151

    Article  PubMed  CAS  Google Scholar 

  • Balestrasse KB, Zilli CG, Tomaro ML (2008) Signal transduction pathways and heme oxygenase induction in soybean leaves subjected to salt stress. Redox Rep 136:255–262

    Article  Google Scholar 

  • Balestrasse KB, Tomaro ML, Batlle A, Noriega GO (2010) The role of 5-aminolevulinic acid in the response to cold stress in soybean plants. Phytochemistry 71(17–18):2038–2045

    Article  PubMed  CAS  Google Scholar 

  • Becana M, Aparicio-Tejo P, Irigoyen J, Sánchez-Díaz M (1986) Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa. Plant Physiol 82:1169–1171

    Article  PubMed  CAS  Google Scholar 

  • Blechert S, Brodschelm W, Hölder S, Kammerer L, Kutchan TM, Mueller MJ, Xia Z-Q, Zeng MH (1995) The octadecanoic pathway: Signal molecules for the regulation of secondary pathways. Proc Natl Acad Sci USA 92:4099–4105

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Davis S, Bhoo SH, Durski AM, Walker JM, Viersta RD (2001) The heme-oxygenase family required for phytochrome chromophore biosynthesis is necessary for proper photomorphogenesis in higher plants. Plant Physiol 126:656–669

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Xia Y, Hu W, Zhang H (2010) Cadmium-induced oxidative damage and protective effects of N-acetyl-l-cysteine against cadmium toxicity in Solanum nigrum L. J Hazard Mater 180:722–729

    Article  PubMed  CAS  Google Scholar 

  • Emborg TJ, Walker JM, Noh B, Vierstra RD (2006) Multiple heme oxygenase family members contribute to the biosynthesis of the phytochrome chromophore in Arabidopsis. Plant Physiol 140:856–868

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE, Ryan CA (1992) Octadenoic precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4:129–134

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: Signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  PubMed  CAS  Google Scholar 

  • Franck T, Kevers C, Gaspar T, Dommes J, Deby C, Greimers R, Serteyn D, Deby-Dupont G (2004) Hyperhydricity of Prunes avium shoots cultured on gelrite: A controlled stress response. Plant Physiol Biochem 42:519–527

    Article  PubMed  CAS  Google Scholar 

  • Gianazza E, Wait R, Sozzi A, Regondi S, Saco D, Labra M (2007) Cadmium induces premature xylogenesis in barley roots. Plant Soil 290:61–68

    Article  Google Scholar 

  • Gundlach H, Müller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 8:2389–2393

    Article  Google Scholar 

  • Guo B, Liang YC, Zhu YG, Zhao FJ (1993) Role of salicylic on rice plant. Photosynth Res 36:75–80

    Article  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Oxford University Press (Clarendon), Oxford

    Google Scholar 

  • Han Y, Zhang J, Chen X, Gao Z, Xuan W, Xu S, Ding X, Shen W (2008) Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa. New Phytol 177:155–166

    PubMed  CAS  Google Scholar 

  • Harms K, Ramirz I, Peña-Cortés H (1998) Inhibition of wound-induced accumulation of allene oxide synthase transcripts in flax leaves by aspirin and salicylic acid. Plant Physiol 108:1741–1746

    Google Scholar 

  • He Y, Fukushige H, Hildebrand D, Gan G (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128:876–884

    Article  PubMed  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1957) The water culture method for growing plants without soil, University of California, Berkeley. Calif Agric Exp Stat Circ 347:1–39

    Google Scholar 

  • Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1996) Antioxidant compound responses to cold stress in differentially sensitive inbred maize lines. Physiol Plant 98(4):685–692

    Article  CAS  Google Scholar 

  • Kikuchi G, Yoshida T, Noguchi M (2005) Heme oxygenase and heme degradation. Biochem Biophys Res Commun 338:558–567

    Article  PubMed  CAS  Google Scholar 

  • Koiwa H, Bressan R, Hasegawa P (1997) Regulation of protease inhibitor and plant defense. Trends Plant Sci 2:379–384

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplast. The effect of hydrogen peroxide and paraquat. Biochem J 210:899–903

    PubMed  CAS  Google Scholar 

  • León J, Rojo E, Sanchez-Serrano JJ (2001) Wound signalling in plants. J Exp Bot 52:1–9

    Article  PubMed  Google Scholar 

  • Ling T, Zhang B, Cui W, Wu M, Liu J, Zhou W, Huang J, Shen W (2009) Carbon monoxide mitigates salt-induced inhibition of root growth and suppresses programmed cell death in wheat primary roots by inhibiting superoxide anion overproduction. Plant Sci 177:331–340

    Article  CAS  Google Scholar 

  • Maciejewska B, Kopcewicz J (2003) Inhibitory effect of methyl jasmonate on flowering and elongation growth in Pharbitis nil. J Plant Growth Regul 21:216–223

    Article  Google Scholar 

  • Maksymiec W (2011) Effects of jasmonate and some other signalling factors on bean and onion growth during the initial phase of cadmium action. Biol Plant 55(1):112–118

    Article  CAS  Google Scholar 

  • Maksymiec W, Krupa Z (2002) Jasmonic acid and heavy metals in Arabidopsis thaliana—a similar physiological response to both stressors? J Plant Physiol 159:509–515

    Article  CAS  Google Scholar 

  • Maksymiec W, Wójcik M, Krupa Z (2007) Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere 66:421–427

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto F, Obayashi T, Sasaki-Sekimoto Y, Ohta H, Takamiya K-I, Masuda T (2004) Gene expression profiling of the tetrapyrrole metabolic pathway in Arabidopsis with a mini-array system. Plant Physiol 135:2379–2391

    Article  PubMed  CAS  Google Scholar 

  • Merkouropoulos G, Shirsat AH (2003) The unusual Arabidopsis extensin gene atExt1 is expressed throughout plant development and is induced by a variety of biotic and abiotic stresses. Planta 217:356–366

    Article  PubMed  Google Scholar 

  • Muramoto T, Kohchi T, Yokota A, Hwang I, Goodman HM (1999) The Arabidopsis photomorphogenic mutant HY1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid haeme oxygenase. Plant Cell 11:335–348

    Article  PubMed  CAS  Google Scholar 

  • Muramoto T, Tsurui N, Terry M, Yokota A, Kohchi T (2002) Expression and biochemical properties of a ferredoxin-dependent heme oxygenase required for phytochrome chromophore synthesis. Plant Physiol 130:1958–1966

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Noriega GO, Balestrasse KB, Batlle A, Tomaro ML (2004) Heme oxygenase exerts a protective role against oxidative stress in soybean leaves. Biochem Biophys Res Commun 323:1003–1008

    Article  PubMed  CAS  Google Scholar 

  • Noriega GO, Yannarelli G, Balestrasse KB, Batlle A, Tomaro ML (2007) The effect of nitric oxide on heme oxygenase gene expression in soybean leaves. Planta 226:1155–1163

    Article  PubMed  CAS  Google Scholar 

  • Piotrowska A, Bajguz A, Godlewska-Żyłkiewicz B, Czerpak R, Kamińska M (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ Exp Bot 66:507–513

    Article  CAS  Google Scholar 

  • Poschenrieder C, Toira R, Barceló J (2006) Can metals defend plants against biotic stress? Trends Plant Sci 11(6):288–295

    Article  PubMed  CAS  Google Scholar 

  • Sembdner G, Parthier B (1993) The biochemistry and the physiological and molecular actions of jasmonates. Annu Rev Plant Physiol Plant Mol Biol 44:569–589

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  PubMed  CAS  Google Scholar 

  • Świątek A, Lenjou M, Van Bockstaele D, Inzé D, Van Onckelen H (2002) Differential effect of jasmonic acid and abscisic acid on cell cycle progression in tobacco BY-2 cells. Plant Physiol 128:201–211

    Article  PubMed  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100(4):681–697

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Ling T, Han Y, Liu K, Zheng Q, Huang L, Yuan X, He Z, Hu B, Fang L, Shen Z, Yang Q, Shen W (2008) Carbon monoxide enhances salt tolerance by nitric oxide-mediated maintenance of ion homeostasis and up-regulation of antioxidant defence in wheat seedling roots. Plant Cell Environ 31:1864–1881

    Article  PubMed  CAS  Google Scholar 

  • Yannarelli GG, Noriega GO, Batlle A, Tomaro ML (2006) Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species. Planta 224:1154–1162

    Article  PubMed  CAS  Google Scholar 

  • Zhai Q, Li C, Zheng W, Wu X, Zhao J, Zhou G, Jiang H, Sun J, Lou Y, Li C (2007) Phytochrome chromophore deficiency leads to overproduction of jasmonic acid and elevated expression of jasmonate-responsive genes in Arabidopsis. Plant Cell Physiol 48(7):1061–1071

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. T. Kohchi for kindly providing the Arabidopsis HO-1 antibodies. This work was supported by grants from the Universidad de Buenos Aires (Argentina) and from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina). KBB, MLT, and AB are career investigators at CONICET, and GON is a research assistant at CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Balestrasse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noriega, G., Cruz, D.S., Batlle, A. et al. Heme Oxygenase is Involved in the Protection Exerted by Jasmonic Acid Against Cadmium Stress in Soybean Roots. J Plant Growth Regul 31, 79–89 (2012). https://doi.org/10.1007/s00344-011-9221-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-011-9221-0

Keywords

Navigation