Skip to main content

Advertisement

Log in

Projections of changes in marine environment in coastal China seas over the 21st century based on CMIP5 models

  • Special Section on Indo-Pac Project
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The increases of atmospheric carbon dioxide and other greenhouse gases have caused fundamental changes to the physical and biogeochemical properties of the oceans, and it will continue to occur in the foreseeable future. Based on the outputs of nine Earth System Models from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), in this study, we provided a synoptic assessment of future changes in the sea surface temperature (SST), salinity, dissolved oxygen (DO), seawater pH, and marine net primary productivity (NPP) in the coastal China seas over the 21st century. The results show that the mid-high latitude areas of the coastal China seas (East China Seas (ECS), including the Bohai Sea, Yellow Sea, and East China Sea) will be simultaneously exposed to enhanced warming, deoxygenation, acidification, and decreasing NPP as a consequence of increasing greenhouse gas emissions. The magnitudes of the changes will increase as the greenhouse gas concentrations increase. Under the high emission scenario (Representative Concentration Pathway 8.5), the ECS will experience an SST increase of 3.24±1.23°C, a DO concentration decrease of 10.90±3.92 µmol/L (decrease of 6.3%), a pH decline of 0.36±0.02, and a NPP reduction of −17.7±6.2 mg/(m2·d) (decrease of 12.9%) relative to the current levels (1980–2005) by the end of this century. The co-occurrence of these changes and their cascade effects are expected to induce considerable biological and ecological responses, thereby making the ECS among the most vulnerable ocean areas to future climate change. Despite high uncertainties, our results have important implications for regional marine assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison E H, Perry A L, Badjeck M C, Adger W N, Brown K, Conway D, Halls A S, Pilling G, Reynolds J D, Andrew N L, Dulvy N. 2009. Vulnerability of national economies to the impacts of climate change on fisheries. Fish and Fisheries, 10(2): 173–196.

    Article  Google Scholar 

  • Behrenfeld M J, Falkowski P G. 1997. A consumer’s guide to phytoplankton primary productivity models. Limnology and Oceanography, 42(7): 1 479–1 491.

    Article  Google Scholar 

  • Bopp L, Resplandy L, Orr J C, Doney S, Dunne J, Gehlen M, Halloran P, Heinze C, Ilyina T, Seferian R, Tjiputra J, Vichi M. 2013. Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences, 10: 6 225–6 245.

    Article  Google Scholar 

  • Cai R S, Tan H J, Qi Q H. 2016. Impacts of and adaptation to inter-decadal marine climate change in coastal China seas. International Journal of Climatology, 36(11): 3 770–3 780.

    Article  Google Scholar 

  • Cai R S, Tan H J, Kontoyiannis H. 2017. Robust surface warming in offshore China seas and its relationship to the East Asian Monsoon wind field and ocean forcing on interdecadal time scales. Journal of Climate, 30(22): 8 987–9 005, https://doi.org/10.1175/JCLI-D-16-0016.1.

    Article  Google Scholar 

  • Cannaby H, Fach B A, Arkin S S, Salihoglu B. 2015. Climatic controls on biophysical interactions in the Black Sea under present day conditions and a potential future (A1B) climate scenario. Journal of Marine Systems, 141: 149–166.

    Article  Google Scholar 

  • Cao L, Zhang H. 2017. The role of biological rates in the simulated warming effect on oceanic CO2 uptake. Journal of Geophysical Research: Biogeosciences, 122(5): 1 098–1 106.

    Google Scholar 

  • Christian J R, Arora V K, Boer G J, Curry C L, Zahariev K, Denman K L, Flato G M, Lee W G, Merryfield W J, Roulet N T, Scinocca J F. 2010. The global carbon cycle in the Canadian Earth System Model (CanESM1): preindustrial control simulation. Journal of Geophysical Research: Biogeosciences, 115(G3): G03014, https://doi.org/10.1029/2008JG000920.

    Article  Google Scholar 

  • Collins W J, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones C D, Joshi M, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S. 2011. Development and evaluation of an Earth-System model-HadGEM2. Geoscientific Model Development, 4(4): 1 051–1 075.

    Article  Google Scholar 

  • Dai M H, Cao Z M, Guo X H, Zhai W D, Liu Z Y, Yin Z Q, Xu Y P, Gan J P, Hu J H, Du C J. 2013. Why are some marginal seas sources of atmospheric CO2? Geophysical Research Letters, 40(10): 2 154–2 158.

    Article  Google Scholar 

  • Dufresne J L, Foujols M A, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, De Noblet N, Duvel J P, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix J Y, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre M P, Lefevre F, Levy C, Li Z X, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N, Vuichard N. 2013. Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Climate Dynamics, 40(9–10): 2 123–2 165.

    Article  Google Scholar 

  • Dunne J P, John J G, Shevliakova E, Stouffer R J, Krasting J P, Malyshev S L, Milly P C D, Sentman L T, Adcroft A J, Cooke W, Dunne K A, Griffies S M, Hallberg R W, Harrison M J, Levy H, Wittenberg A T, Phillips P J, Zadeh N. 2013. GFDL’s ESM2 global coupled climate-carbon Earth System Models. Part II: Carbon system formulation and baseline simulation characteristics. Journal of Climate, 26(7): 2 247–2 267.

    Article  Google Scholar 

  • Durack P J, Wijffels S E, Matear R J. 2012. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336(6080): 455–458.

    Article  Google Scholar 

  • Gobler C J, Doherty O M, Hattenrath-Lehmann T K, Griffith A W, Kang Y, Litaker R W. 2017. Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. Proceedings of the National Academy of Sciences of the United States of America, 114(19): 4 975–4 980, https://doi.org/10.1073/pnas.1619575114.

    Article  Google Scholar 

  • Hoegh-Guldberg O, Bruno J F. 2010. The impact of climate change on the world’s marine ecosystems. Science, 328(5985): 1 523–1 528.

    Article  Google Scholar 

  • Holt J, Schrum C, Cannaby H, Daewel U, Allen I, Artioli Y, Artioli L, Bopp L, Butenschon M, Fach B A, Harle J, Pushpadas D, Salihoglu B, Wakelin S. 2016. Potential impacts of climate change on the primary production of regional seas: a comparative analysis of five European seas. Progress in Oceanography, 140: 91–115.

    Article  Google Scholar 

  • Ilyina T, Six K D, Segschneider J, Maier-Reimer E, LI H M, Núñez-Riboni I. 2013. Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth System Model in different CMIP5 experimental realizations. Journal of Advances in Modeling Earth Systems, 5(2): 287–315.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change. 2014. Climate Change 2013-the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Kirtman B, Power S B, Adedoyin J A, Boer J G, Bojariu R, Camilloni I, Doblas-Reyes F J, Fiore A M, Kimoto M, Meehl G A, Prather M, Sarr A, Schär C, Sutton R, Van Oldenborgh J G, Vecchi G, Wang H J. 2013. Near-term climate change: projections and predictability. In: Stocker T F, Qin D H, Plattner G K, Tignor M M B, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M eds. Climate Change 2013-The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  • Kitoh A. 2006. Asian monsoons in the future. In: Wang B ed. The Asian Monsoon. Springer, Berlin, Heidelberg.

    Chapter  Google Scholar 

  • Lauvset S K, Key R M, Olsen A, van Heuven S, Velo A, Lin X H, Schirnick C, Kozyr A, Tanhua T, Hoppema M, Jutterström S, Steinfeldt R, Jeansson E, Ishii M, Perez F F, Suzuki T, Watelet S. 2016. A new global interior ocean mapped climatology: The 1°×1°GLODAP version 2. Earth System Science Data, 8: 325–340.

    Article  Google Scholar 

  • Li A, Yu F, Diao X Y. 2015. Interannual salinity variability of the Northern Yellow Sea cold water mass. Chinese Journal of Oceanology and Limnology, 33(3): 779–789.

    Article  Google Scholar 

  • Li L, Li Q. 2010. Effects of stocking density, temperature, and salinity on larval survival and growth of the red race of the sea cucumber Apostichopus japonicus (Selenka). Aquaculture International, 18(3): 447–460.

    Article  Google Scholar 

  • Lozier M S, Dave A C, Palter J B, Gerber L M, Barber R T. 2011. On the relationship between stratification and primary productivity in the North Atlantic. Geophysical Research Letters, 38(18): L18609.

    Article  Google Scholar 

  • Mora C, Wei C L, Rollo A, Amaro T, Baco A R, Billett D, Bopp L, Chen Q, Collier M, Danovaro R, Gooday A J, Grupe B M, Halloran P R, Ingels J, Jones D O B, Levin L A, Nakano H, Norling K, Ramirez-Llodra E, Rex M, Ruhl H A, Smith C R, Sweetman A K, Thurber A R, Tjiputra J F, Usseglio P, Watling L, Wu T W, Yasuhara M. 2013. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biology, 11(10): e1001682, https://doi.org/10.1371/journal.pbio.100168.

    Article  Google Scholar 

  • Rayner N A, Parker D E, Horton E B, Folland C K, Alexander L V, Rowell D P, Kent E C, Kaplan A. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108(D14): 4 407, https://doi.org/10.1029/2002JD002670.

    Article  Google Scholar 

  • Tan H J, Cai R S, Yan X H. 2016. Projected 21st century sea surface temperature over offshore China based on IPCC-CMIP5 models. Journal of Applied Oceanography, 35(4): 451–458. (in Chinese with English abstract)

    Google Scholar 

  • Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4): 485–498.

    Article  Google Scholar 

  • Tian Y J, Kidokoro H, Watanabe T. 2006. Long-term changes in the fish community structure from the Tsushima warm current region of the Japan/East Sea with an emphasis on the impacts of fishing and climate regime shift over the last four decades. Progress in Oceanography, 68(2–4): 217–237.

    Article  Google Scholar 

  • Tjiputra J F, Roelandt C, Bentsen M, Lawrence D M, Lorentzen T, Schwinger J, Seland Ø, Heinze C. 2013. Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geoscientific Model Development, 6(2): 301–325.

    Article  Google Scholar 

  • Vichi M, Manzini E, Fogli P G, Alessandri A, Patara L, Scoccimarro E, Masina S, Navarra A. 2011. Global and regional ocean carbon uptake and climate change: Sensitivity to a substantial mitigation scenario. Climate Dynamics, 37(9–10): 1 929–1 947.

    Article  Google Scholar 

  • Voldoire A, Sanchez-Gomez E, y Mélia D S, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Deshayes H, Fernandez E, Madec G, Maisonnave E, Moine M P, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Coquart F. 2013. The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dynamics, 40(9–10): 2 091’2 121.

    Article  Google Scholar 

  • Wang Y Q, Lin X P. 2018. A preliminary study on the trends and mechanism of the upper ocean salinity in the East China Seas during 1976–1996. Periodical of Ocean University of China, 48(11): 11–18. (in Chinese with English abstract)

    Google Scholar 

  • Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M. 2011. MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development, 4(4): 845–872.

    Article  Google Scholar 

  • Wei Q S, Wang B D, Yu Z G, Chen J F, Xue L. 2017. Mechanisms leading to the frequent occurrences of hypoxia and a preliminary analysis of the associated acidification off the Changjiang Estuary in summer. Science China Earth Sciences, 60(2): 158–179.

    Article  Google Scholar 

  • Xie S P, Hafner J, Tanimoto Y, Liu W T, Tokinaga H, Xu H M. 2002. Bathymetric effect on the winter sea surface temperature and climate of the Yellow and East China Seas. Geophysical Research Letters, 29(24): 2 228, https://doi.org/10.1029/2002GL015884.

    Article  Google Scholar 

  • Zeebe R E, Zachos J C, Caldeira K, Tyrrell T. 2008. Carbon emissions and acidification. Science, 321(5885): 51–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongshuo Cai.

Additional information

Data Availability Statement

All data analyzed in this study are publicly available. Outputs from the nine Earth System Models from the CMIP5 were downloaded from the archive at http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html.

Supported by the National Key R&D Program of China (Nos. 2017YFA0604901, 2017YFA0604902), the Scientific Research Foundation of the Third Institute of Oceanography, Ministry of Natural Resources, China (No. TIO2017030), and the Major Project of National Social Science Foundation (No. 17ZDA172)

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, H., Cai, R., Huo, Y. et al. Projections of changes in marine environment in coastal China seas over the 21st century based on CMIP5 models. J. Ocean. Limnol. 38, 1676–1691 (2020). https://doi.org/10.1007/s00343-019-9134-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-9134-5

Keywords

Navigation