Skip to main content

Advertisement

Log in

Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

  • Published:
Climate Dynamics Aims and scope Submit manuscript

An Erratum to this article was published on 24 July 2011

Abstract

Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric “target” concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the projected concentration pathways of aerosol in the next decades control the evolution of surface ocean biogeochemistry in the second half of this century more than the specific pathways of atmospheric CO2 concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alessandri A (2006) Effects of land surface and vegetation processes on the climate simulated by an atmospheric general circulation model. PhD Thesis, Bologna University Alma Mater Studiorum, 114 pp

  • Alessandri A et al (2011) Coupling between the land surface and the changing climate (in preparation)

  • Bopp L, Aumont O, Cadule P, Alvain S, Gehlen M (2005) Response of diatoms distribution to global warming and potential implications: a global model study. Geophys Res Lett 32:L19,606. doi:10.1029/2005GL023653

    Article  Google Scholar 

  • Boucher O, Pham M (2002) History of sulfate aerosol radiative forcings. Geophys Res Lett 29:1308. doi:10.1029/2001GL014048

    Google Scholar 

  • Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104(47):18866–18870. doi:10.1073/pnas.0702737104

    Article  Google Scholar 

  • Coale KH, Fitzwater SE, Gordon RM, Johnson KS, Barber RT (1996) Control of community growth and export production by upwelled iron in the equatorial Pacific ocean. Nature 379:621–624

    Article  Google Scholar 

  • Conkright M, Garcia H, O’Brien T, Locarnini R, Boyer T, Stephens C, Antonov J (2002) World Ocean Atlas 2001, vol 4: Nutrients, vol. NOAA Atlas NESDIS 52. US Government Printing Office, Washington

  • Crueger T, Roeckner E, Raddatz T, Schnur R, Wetzel P (2008) Ocean dynamics determine the response of oceanic CO2 uptake to climate change. Clim Dyn 31(2–3):151–168. doi:10.1007/s00382-007-0342-x

    Article  Google Scholar 

  • Danabasoglu G (2008) On multi-decadal variability of the Atlantic meridional overturning circulation in the Community Climate System Model version 3 (CCSM3). J Clim 21:5524–5544

    Article  Google Scholar 

  • Den Elzen MGJ, van Vuuren DP (2007) Peaking profiles for achieving long-term temperature targets with more likelihood at lower costs. Proc Natl Acad Sci USA 104:17931–17936

    Article  Google Scholar 

  • Denman K, Brasseur G, Chidthaisong A, Ciais P, Cox P, Dickinson R, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias P, Wofsy S, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Farneti R, Vallis GK (2009) Mechanisms of interdecadal climate variability and the role of ocean–atmosphere coupling. Clim Dyn. doi:10.1007/s00382-009-0674-9

    Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305(5682):362–366. doi:10.1126/science.1097329

    Article  Google Scholar 

  • Fogli PG, Manzini E, Vichi M, Alessandri LPA, Gualdi S, Scoccimarro E, Masina S, Navarra A (2009) INGV-CMCC carbon: a carbon cycle earth system model. Tech. Rep. RP0061, CMCC, http://www.cmcc.it/publications-meetings/publications/research-papers/rp0061-ingv-cmcc-carbon-icc-a-carbon-cycle-earth-system-model

  • Frölicher TL, Joos F (2010) Reversible and irreversible impacts of greenhouse gas emissions in multi-century projections with the NCAR global coupled carbon cycle-climate model. Clim Dyn (in press). doi:10.1007/s00382-009-0727-0

  • Goodman PJ, Hazeleger W, de Vries P, Cane M (2005) Pathways into the Pacific equatorial undercurrent: a trajectory analysis. J Phys Oceanogr 35:2134–2151

    Article  Google Scholar 

  • Gruber N, Sarmiento JL (2002) Biogeochemical/physical interactions in elemental cycles. In: Robinson AR, Mccarthy JJ, Rothschild BJ (eds) Biological–physical interactions in the oceans, THE SEA, vol 12, chap 9. Wiley, New York, pp 337–399

    Google Scholar 

  • Gruber N, Gloor M, Mikaloff-Fletcher SE, Doney SC, Dutkiewicz S, Follows MJ, Gerber M, Jacobson AR, Joos F, Lindsay K, Menemenlis D, Mouchet A, Mueller SA, Sarmiento JL, Takahashi T (2009) Oceanic sources, sinks, and transport of atmospheric CO2. Glob Biogeochem Cycles 23:GB1005. doi:10.1029/2008GB003349

    Article  Google Scholar 

  • Gu D, Philander S (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275(5301):805

    Article  Google Scholar 

  • Gualdi S, Scoccimarro E, Navarra A (2008) Changes in tropical cyclone activity due to global warming: results from a high-resolution coupled general circulation model. J Clim 21(20):5204–5228

    Article  Google Scholar 

  • Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Niño in ocean-atmosphere general circulation models: progress and challenges. Bull Am Meteorol Soc 90(3):325–340

    Article  Google Scholar 

  • Hibbard K, Meehl G, Cox P, Friedlingstein P (2007) A strategy for climate change stabilization experiments. EOS 88(20):217. doi:10.1029/2007EO200002

    Article  Google Scholar 

  • Houghton RA (2008) Carbon flux to the atmosphere from land-use changes: 1850–2005. In: TRENDS: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge. http://www.cdiac.ornl.gov/trends/landuse/houghton/houghton.html

  • Johns TC, Royer J-F, Höschel I, Huebener H, Roeckner E, Manzini E, May W, Dufresne J-L, Otterå OH, van Vuuren DP, Salas y Melia D, Giorgetta M, Denvil S, Yang S, Fogli PG, Körper J, Hewitt CD (2011) Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment (accepted for publication on Clim Dyn)

  • Key RM, Kozyr A, Sabine CL, Lee K, Wanninkhof R, Bullister JL, Feely RA, Millero FJ, Mordy C, Peng TH (2004) A global ocean carbon climatology: results from global data analysis project (GLODAP). Glob Biogeochem Cycles 18(4):GB4031

    Article  Google Scholar 

  • Kiehl JT, Schneider TL, Portmann RW, Solomon S (1999) Climate forcing due to tropospheric and stratospheric ozone. J Geophys Res Atmos 104:31239–31254

    Article  Google Scholar 

  • Law RM, Matear RJ, Francey RJ (2008) Comment on “Saturation of the Southern Ocean CO2 sink due to recent climate change”. Science 319(5863):570. doi:10.1126/science.1149077

    Article  Google Scholar 

  • Le Quéré C, Rodenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R, Gomez A, Labuschagne C, Ramonet M, Nakazawa T, Metzl N, Gillett N, Heimann M (2007) Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316(5832):1735–1738. doi:10.1126/science.1136188

    Article  Google Scholar 

  • Levitus S, Boyer T, Conkright M, O’Brien T, Antonov J, Stephens C, Stathoplos L, Johnson D, Gelfeld R (1998) WORLD OCEAN DATABASE 1998: vol 1: introduction, vol. NOAA Atlas NESDIS 18, 346 pp. US Gov. Printing Office, Washington

  • Lovenduski NS, Gruber N, Doney SC (2008) Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Glob Biogeochem Cycles 22:GB3016. doi:10.1029/2007GB003139

    Article  Google Scholar 

  • Lowe JA, Hewitt CD, van Vuuren DP, Johns TC, Stehfest E, Royer JF, van der Linden PJ (2009) New study for climate modeling, analyses, and scenarios. EOS Trans AGU 90:181–182

    Article  Google Scholar 

  • Lozier MS, Roussenov V, Reed MSC, Williams RG (2010) Opposing decadal changes for the North Atlantic meridional overturning circulation. Nat Geosci 3(10):728–734. doi:10.1038/ngeo947

    Article  Google Scholar 

  • Lukas R, Firing E (1984) The geostrophic balance of the Pacific equatorial undercurrent. Deep Sea Res 31:61–66

    Article  Google Scholar 

  • Madec G, Imbard M (1996) A global ocean mesh to overcome the North Pole singularity. Clim Dyn 12:381–388

    Article  Google Scholar 

  • Madec G, Delecluse P, Imbard M, Levy C (1998) OPA8.1 ocean general circulation model reference manual, Notes du pole de modelisation. IPSL, France, http://www.nemo-ocean.eu/Media/Files/Doc_OPA8.1

  • Marland G, Boden TA, Andres RJ (2008) Global, regional, and national CO2 emissions. In: TRENDS: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge. http://www.cdiac.ornl.gov/trends/emis/tre_glob.html

  • Marti O, Braconnot P, Dufresne JL, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Codron F, de Noblet N, Denvil S, Fairhead L, Fichefet T, Foujols MA, Friedlingstein P, Goosse H, Grandpeix JY, Guilyardi E, Hourdin F, Idelkadi A, Kageyama M, Krinner G, Lévy C, Madec G, Mignot J, Musat I, Swingedouw D, Talandier C (2010) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34(1):1–26. doi:10.1007/s00382-009-0640-6

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Nakicenovic N, Swart R (eds) (2000) Special report on emissions scenarios. A special report of Working Group III of the Intergovernmental Panel on Climate Change, 612 pp. Cambridge University Press, Cambridge, UK, ISBN 0521804930

  • Ono T, Shiomoto A, Saino T (2008) Recent decrease of summer nutrients concentrations and future possible shrinkage of the subarctic north pacific high-nutrient low-chlorophyll region. Glob Biogeochem Cycles 22. doi: 10.1029/2007GB003092

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Raven JA, Falkowski PG (1999) Oceanic sinks for atmospheric CO2. Plant Cell Environ 22:741–755

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Rodgers KB, Blanke B, Madec G, Aumont O, Ciais P, Dutay J-C (2003) Extratropical sources of equatorial Pacific upwelling in an OGCM. Geophys Res Lett 30(2):1084. doi:10.1029/2002GL016003

    Article  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I: model description. Rep. No. 349, Max-Planck-Institut für Meteorologie, Hamburg, 127 pp

  • Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791

    Article  Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305(5682):367–371. doi:10.1126/science.1097403

    Article  Google Scholar 

  • Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics, Princeton University Press, Princeton, 529 pp

  • Sarmiento J, Hughes T, Stouffer R, Manabe S (1998) Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393:245–249

    Article  Google Scholar 

  • Sarmiento JL, Slater R, Barber R, Bopp L, Doney SC, Hirst AC, Kleypas J, Matear R, Mikolajewicz U, Monfray P, Soldatov V, Spall SA, Stouffer R (2004) Response of ocean ecosystems to climate warming. Glob Biogeochem Cycles 18:3003

    Article  Google Scholar 

  • Schmittner A, Latif M, Schneider B (2005) Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys Res Lett 32(23). doi: 10.1029/2005GL024368

  • Schneider B, Bopp L, Gehlen M, Segschneider J, Frölicher TL, Cadule P, Friedlingstein P, Doney SC, Behrenfeld MJ, Joos F (2008) Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models. Biogeosciences 5:597–614

    Article  Google Scholar 

  • Sloyan B, Johnson G, Kessler W (2003) The Pacific Cold Tongue: a pathway for interhemispheric exchange. J Phys Oceanogr 33:1027–1043

    Article  Google Scholar 

  • Steinacher M, Joos F, Frölicher TL, Bopp L, Cocco V, Cadule P, Doney SC, Gehlen M, Lindsay K, Moore JK, Schneider B, Segschneider J (2010) Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7:979–1005

    Article  Google Scholar 

  • Stouffer JR, Weaver AJ, Eby M (2004) A method for obtaining pre-twentieth century initial conditions for use in climate change studies. Clim Dyn 23:327–339. doi:10.1007/s00382-004-0446-5

    Article  Google Scholar 

  • Takahashi T, Sutherland SC, Kozyr A (2009) Global Ocean surface water partial pressure of CO2 database: measurements performed during 1968–2008 (Version 2008). ORNL/CDIAC-152, NDP-088r. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge. doi: 10.3334/CDIAC/otg.ndp088r

  • Timmermann R, Goosse H, Madec G, Fichefet T, Etheb C, Duliere V (2005) On the representation of high latitude processes in the ORCA-LIM global coupled sea ice ocean model. Ocean Modell 8:175–201

    Article  Google Scholar 

  • Toggweiler JR, Russell J (2008) Ocean circulation in a warming climate. Nature 451:286–288. doi:10.1038/nature06590

    Article  Google Scholar 

  • Uppala S, Kallberg P, Simmons A, Andrae U, da Costa Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G, Li X, Onogi K, Saarinen S, Sokka N, Allan R, Andersson E, Arpe K, Balmaseda M, Beljaars A, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins B, Isaksen L, Janssen P, Jenne R, McNally A, Mahfouf J-F, Morcrette J-J, Rayner N, Saunders R, Simon P, Sterl A, Trenberth K, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteor Soc 131:2961–3012. doi:10.1256/qj.04.17

    Article  Google Scholar 

  • Valcke S (2006) OASIS3 User Guide (prism_2-5), PRISM Report No 2, 6th edn. CERFACS, Tolouse, 64 pp

  • van Vuuren D, den Elzen M, Lucas P, Eickhout B, Strengers B, van Ruijven B, Wonink S, van Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 23:5–7. doi:10.1007/s/10584-006-9172-9

    Google Scholar 

  • Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340. doi:10.1175/JCLI4258.1

    Article  Google Scholar 

  • Vecchi GA, Soden BJ (2008) Examining the tropical pacific’s response to global warming. EOS 89(9):81–83

    Article  Google Scholar 

  • Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76. doi:10.1038/nature04744

    Article  Google Scholar 

  • Vichi M, Masina S (2009) Skill assessment of the PELAGOS global ocean biogeochemistry model over the period 1980–2000. Biogeosciences 6:3511–3562

    Article  Google Scholar 

  • Vichi M, Masina S, Navarra A (2007a) A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part II: numerical simulations. J Mar Syst 64:110–134

    Article  Google Scholar 

  • Vichi M, Pinardi N, Masina S (2007b) A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: theory. J Mar Syst 64:89–109

    Article  Google Scholar 

  • Vichi M, Masina S, Nencioli F (2008) A process-oriented model study of equatorial Pacific phytoplankton: the role of iron supply and tropical instability waves. Prog Oceanogr 78:147–162. doi:10.1016/j.pocean.2008.04.003

    Article  Google Scholar 

  • Volk T, Hoffert MI (1985) Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations archean to present, Geophysical monograph series, vol 32. AGU, Washington D. C, pp 99–110

  • Wanninkhof R (1992) Relationship between windspeed and gas exchange over the ocean. J Geophys Res 97:7373–7382

    Article  Google Scholar 

  • Weisberg RH, Qiao Lin (2000) Equatorial upwelling in the Central Pacific estimated from moored velocity profilers. J Phys Oceanogr 30:105–124

    Article  Google Scholar 

  • Zeebe RE, Wolf-Gladrow DA (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Oceanography Book Series, vol 65, Elsevier, Amsterdam, 346 pp

  • Zeng N, Mariotti A, Wetzel P (2004) Terrestrial mechanisms of interannual CO2 variability. Glob Biogeochem Cycles 19:2539–2558

    Google Scholar 

  • Zickfeld K, Fyfe JC, Eby M, Weaver AJ (2008) Comment on "saturation of the Southern Ocean CO2 sink due to recent climate change". Science 319(5863):570. doi:10.1126/science.1146886

    Google Scholar 

Download references

Acknowledgments

This work was supported by the ENSEMBLES project, funded by the European Commission’s 6th Framework Programme through contract GOCE-CT-2003-505539 and by the Italian FISR project VECTOR funded by the Ministry of University and Scientific Research.We are grateful to the three Reviewers, for their thorough comments and suggestions that have improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Vichi.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00382-011-1144-8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vichi, M., Manzini, E., Fogli, P.G. et al. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario. Clim Dyn 37, 1929–1947 (2011). https://doi.org/10.1007/s00382-011-1079-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1079-0

Keywords

Navigation