Skip to main content

Advertisement

Log in

Tracing the settlement region of massive floating green algae in the Yellow Sea

  • Ecology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Outbreaks of large-scale green tides formed by Ulva prolifera in the Yellow Sea (YS) cause heavy ecological damages and huge economic losses. However, the ecological consequences of green tides remain poorly understood due to the lack of knowledge on the settlement region of massive green algae floating in the YS. In this study, we established a method to trace the settlement region of floating green algae, using 28-isofucosterol preserved in sediment as the specific biomarker for green algae. Sterols including 28-isofucosterol in surface sediment samples collected during an investigation in the YS and the Bohai Sea (BS) in August 2015 were analyzed using gas chromatography coupled with a mass spectrometer (GC-MS). Based on the content of 28-isofucosterol in sediment samples, the potential settlement region of floating green algae was identified in the sea area southeast to the Shandong Peninsula around the sampling site H06 (122.66°E, 36.00°N). This paper presents a first result on the settlement region of floating green algae in the YS for providing a solid basis to elucidate the ecological consequences of green tides in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balakrishna K, Probst J L. 2005. Organic carbon transport and C/N ratio variations in a large tropical river: Godavari as a case study, India. Biogeochemistry, 73(3):457–473.

    Article  Google Scholar 

  • Bao M, Guan W B, Yang Y, Cao Z Y, Chen Q. 2015. Drifting trajectories of green algae in the western Yellow Sea during the spring and summer of 2012. Estuarine, Coastal and Shelf Science, 163:9–16.

    Article  Google Scholar 

  • Bolger L M, Rees H H, Goad L J, Goodwin T W. 1969. Incorporation of [2-14C] mevalonic acid into 28-isofucosterol by leaves of Pisum sativum. Biochemical Journal, 114(4): 892–893.

    Article  Google Scholar 

  • Canuel E A, Freeman K H, Wakeham S G. 1997. Isotopic compositions of lipid biomarker compounds in estuarine plants and surface sediments. Limnology and Oceanography, 42(7):1 570–1 583.

    Article  Google Scholar 

  • Cho H J, Matsuoka K. 2001. Distribution of dinoflagellate cysts in surface sediments from the Yellow Sea and East China Sea. Marine Micropaleontology, 42(3–4):103–123.

    Article  Google Scholar 

  • Ding Y M. 2014. Impacts of Ulva (Enteromorpha) Prolifera in the Green Tide on the Yellow Sea Ecological Environment-Implications from Migration and Transformation of Biogenic Elements. Institute of Oceanology, Chinese Academy of Sciences, Qingdao. p.112. (in Chinese with English abstract)

    Google Scholar 

  • Fattore E, Benfenati E, Marelli R, Cools E, Fanelli R. 1996. Sterols in sediment samples from Venice Lagoon, Italy. Chemosphere, 33(12):2 383–2 393.

    Article  Google Scholar 

  • Geng H X, Yu R C, Chen Z F, Peng Q C, Yan T, Zhou M J. 2017. Analysis of sterols in selected bloom-forming algae in China. Harmful Algae, 66:29–39.

    Article  Google Scholar 

  • Geng H X, Yu R C, Yan T, Zhang Q C, Kong F Z, Zhou M J. 2018. Using sterol biomarkers to trace deposition areas of floating green algae after green tides. Oceanologia et Limnologia Sinica, 49(5):1 094–1 102. (in Chinese with English abstract)

    Google Scholar 

  • Gibbons G F, Goad L J, Goodwin T W. 1967. The sterols of some marine red algae. Phytochemistry, 6(5):677–683.

    Article  Google Scholar 

  • Gibbons G F, Goad L J, Goodwin T W. 1968. The identification of 28-isofucosterol in the marine green algae Enteromorpha intestinalis and Ulva lactuca. Phytochemistry, 7(6): 983–988.

    Article  Google Scholar 

  • Giner J L, Li X Y, Boyer G L. 2001. Sterol composition of Aureoumbra lagunensis, the Texas brown tide alga. Phytochemistry, 57(5):787–789.

    Article  Google Scholar 

  • Giner J L, Zhao H, Boyer G L, Satchwell M F, Andersen R A. 2009. Sterol chemotaxonomy of marine pelagophyte algae. Chemistry & Biodiversity, 6(7):1 111–1 130.

    Article  Google Scholar 

  • Harris P G, Zhao M, Rosell-Melé A, Tiedemann R, Sarnthein M, Maxwell J R. 1996. Chlorin accumulation rate as a proxy for Quaternary marine primary productivity. Nature, 383(6595):63–65.

    Article  Google Scholar 

  • Hartmann M A. 1998. Plant sterols and the membrane environment. Trends in Plant Science, 3(5):170–175.

    Article  Google Scholar 

  • Ikekawa N, Morisaki N, Tsuda K, Yoshida T. 1968. Sterol compositions in some green algae and brown algae. Steroids, 12(1):41–48.

    Article  Google Scholar 

  • Itoh T, Sakurai S, Tamura T, Matsumoto T. 1980. Occurrence of 24(E)-ethylidene sterols in two solanaceae seed oils and rice bran oil. Lipids, 15(1):22–25.

    Article  Google Scholar 

  • Ji M H. 1997. Seaweed Chemistry. Science Press, Beijing, China. (in Chinese).

    Google Scholar 

  • Knights B A. 1970. Sterols in Ascophyllum nodosum. Phytochemistry, 9(4): 903–905.

    Article  Google Scholar 

  • Leliaert F, Zhang X W, Ye N H, Malta E J, Engelen A H, Mineur F, Verbruggen H, De Clerck O. 2009. Research note: identity of the Qingdao algal bloom. Phycological Research, 57(2):147–151.

    Article  Google Scholar 

  • Liu D Y, Keesing J K, Dong Z J, Zhen Y, Di B P, Shi Y J, Fearns P, Shi P. 2010. Recurrence of the world’s largest green-tide in 2009 in Yellow Sea, China: Porphyra yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms. Marine Pollution Bulletin, 60(9):1 423–1 432.

    Article  Google Scholar 

  • Liu D Y, Keesing J K, He P M, Wang Z L, Shi Y J, Wang Y J. 2013. The world’s largest macroalgal bloom in the Yellow Sea, China: formation and implications. Estuarine, Coastal and Shelf Science, 129:2–10.

    Article  Google Scholar 

  • Liu X Q, Li Y, Wang Z L, Zhang Q C, Cai X Q. 2015. Cruise observation of Ulva prolifera bloom in the southern Yellow Sea, China. Estuarine, Coastal and Shelf Science, 163:17–22.

    Article  Google Scholar 

  • Liu X Q, Wang Z L, Zhang X L. 2016. A review of the green tides in the Yellow Sea, China. Marine Environmental Research, 119:189–196.

    Article  Google Scholar 

  • Lü X G, Qiao F L. 2008. Distribution of sunken macroalgae against the background of tidal circulation in the coastal waters of Qingdao, China, in summer 2008. Geophysical Research Letters, 35(23):L23614.

    Article  Google Scholar 

  • Menzel D, van Bergen P F, Schouten S, Damsté J S S. 2003. Reconstruction of changes in export productivity during Pliocene sapropel deposition: a biomarker approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 190:273–287.

    Article  Google Scholar 

  • Meyers P A, Ishiwatari R. 1993. Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry, 20(7):867–900.

    Article  Google Scholar 

  • Meyers P A. 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry, 34(2):261–289.

    Article  Google Scholar 

  • Nelson D M, Tréguer P, Brzezinski M A, Leynaert A, Quéguiner B. 1995. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycle, 9(3):359–372.

    Article  Google Scholar 

  • Okano M, Aratani T. 1979. Constituents in marine algae. 1. Seasonal variation of sterol, hydrocarbon, fatty acid, and phytol fractions in Ulva pertusa. Bulletin of the Japanese Society of Scientific Fisheries, 45(3): 389–393.

    Article  Google Scholar 

  • Okano M, Mizui F, Funaki Y, Aratani T. 1983. Seasonal variation of sterol, hydrocarbon, fatty acid and phytol fractions in Enteromorpha prolifera (Müller) J. Agardh. Bulletin of the Japanese Society of Scientific Fisheries, 49(4):621–626.

    Article  Google Scholar 

  • Patterson G W. 1974. Sterols of some green algae. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 47(2):453–457.

    Article  Google Scholar 

  • Prahl F G, Bennett J T, Carpenter R. 1980. The early diagenesis of aliphatic hydrocarbons and organic matter in sedimentary particulates from Dabob Bay, Washington. Geochimica et Cosmochimica Acta, 44(12):1 967–1 976.

    Article  Google Scholar 

  • Pu X M, Sun S, Yang B, Zhang G T, Zhang F. 2004. Life history strategies of Calanus sinicus in the southern Yellow Sea in summer. Journal ofPlankton Research, 26(9):1 059–1 068.

    Article  Google Scholar 

  • Shin H H, Lim D, Park S Y, Heo S, Kim S Y. 2013. Distribution of dinoflagellate cysts in Yellow Sea sediments. Acta Oceanologica Sinica, 32(9):91–98.

    Article  Google Scholar 

  • Tian R C, Sicre M A, Saliot A. 1992. Aspects of the geochemistry of sedimentary sterols in the Chang Jiang estuary. Organic Geochemistry, 18(6):843–850.

    Article  Google Scholar 

  • Volkman J K, Barrett S M, Blackburn S I, Mansour M P, Sikes E L, Gelin F. 1998. Microalgal biomarkers: a review of recent research developments. Organic Geochemistry, 29(5–7):1 163–1 19980.

    Article  Google Scholar 

  • Volkman J K. 1986. A review of sterol markers for marine and terrigenous organic matter. Organic Geochemistry, 9(2):83–99.

    Article  Google Scholar 

  • Volkman J K. 2003. Sterols in microorganisms. Applied Microbiology and Biotechnology, 60(5):495–506.

    Article  Google Scholar 

  • Wang C, Yu R C, Zhou M J. 2011. Acute toxicity of live and decomposing green alga Ulva (Enteromorpha) prolifera to abalone Haliotis discus hannai. Chinese Journal of Oceanology and Limnology, 29(3): 541–546.

    Article  Google Scholar 

  • Wang C, Yu R C, Zhou M J. 2012. Effects of the decomposing green macroalga Ulva (Enteromorpha) prolifera on the growth of four red-tide species. Harmful Algae, 16:12–19.

    Article  Google Scholar 

  • Wang R, Zuo T, Wang K. 2003. The Yellow Sea cold bottom water—an oversummering site for Calanus sinicus (Copepoda, Crustacea). Journal of Plankton Research, 25(2):169–183.

    Article  Google Scholar 

  • Werne J P, Hollander D J, Lyons T W, Peterson L C. 2000. Climate-induced variations in productivity and planktonic ecosystem structure from the Younger Dryas to Holocene in the Cariaco Basin, Venezuela. Paleoceanography, 15(1):19–29.

    Article  Google Scholar 

  • Ye X W, Liu S M, Zhao Y F, Zhang J. 2004. The distribution of biogenic silica in the sediments of the East China Sea and the Yellow Sea and its environmental signification. China Environmental Science, 24(3):265–269. (in Chinese with English abstract)

    Google Scholar 

  • Zhang Y, Yu Q, Ma W C, Chen L M. 2010. Atmospheric deposition of inorganic nitrogen to the eastern China seas and its implications to marine biogeochemistry. Journal of Geophysical Research, 115(D7):D00K10.

    Google Scholar 

  • Zhou M J, Liu D Y, Anderson D M, Valiela I. 2015. Introduction to the Special Issue on green tides in the Yellow Sea. Estuarine, Coastal and Shelf Science, 163:3–8.

    Article  Google Scholar 

Download references

7 Acknowledgement

The sampling for this study is supported by the open cruise organized by NSFC. We sincerely thank Dr. PENG Quancai and LI Chen for the help in sample analysis and Dr. CHEN Xue for collecting sediment samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rencheng Yu.

Additional information

6 Dada Availability Statement

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Supported by the National Natural Science Foundation of China (No. 41676106), the Program of the Qingdao National Laboratory for Marine Science and Technology (No. 2016ASKJ02), the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (No. 2018SDKJ0504), the Qingdao Postdoctoral Research Project, the Marine Ecology and Environmental Science Function Laboratory Youth Talent Cultivation Project of Qingdao National Laboratory for Marine Science and Technology (No. LMEES-YTSP-2018-01-02), and the project jointly supported by Shandong Province and the National Natural Science Foundation of China (NSFC) (No. U1606404)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, H., Yu, R., Zhang, Q. et al. Tracing the settlement region of massive floating green algae in the Yellow Sea. J. Ocean. Limnol. 37, 1555–1565 (2019). https://doi.org/10.1007/s00343-019-8348-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-8348-x

Keyword

Navigation