Skip to main content

Advertisement

Log in

Organic carbon transport and C/N ratio variations in a large tropical river: Godavari as a case study, India

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract.

This study gives an insight into the source of organic carbon and nitrogen in the Godavari river and its tributaries, the yield of organic carbon from the catchment, seasonal variability in their concentration and the ultimate flux of organic and inorganic carbon into the Bay of Bengal. Particulate organic carbon/particulate organic nitrogen (POC/PON or C/N) ratios revealed that the dominant source of organic matter in the high season is from the soil (C/N = 8–14), while in the rest of the seasons, the river-derived (in situ) phytoplankton is the major source (C/N = l–8). Amount of organic materials carried from the lower catchment and flood plains to the oceans during the high season are 3 to 91 times higher than in the moderate and low seasons. Large-scale erosion and deforestation in the catchment has led to higher net yield of organic carbon in the Godavari catchment when compared to other major world rivers. The total flux of POC, and dissolved inorganic carbon (DIC) from the Godavari river to the Bay of Bengal is estimated as 756 × 109 and 2520 × 109 g yr−1, respectively. About 22% of POC is lost in the main channel because of oxidation of labile organic matter, entrapment of organic material behind dams/sedimentation along flood plains and river channel; the DIC fluxes as a function of alkalinity are conservative throughout the river channel. Finally, the C/N ratios (∼12) of the ultimate fluxes of particulate organic carbon suggest the dominance of refractory/stable soil organic matter that could eventually get buried in the coastal sediments on a geological time scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Arain (1987) Persisting trends in carbon and mineral transport monitoring of the Indus Rivers E.T. Degens S. Kempe G. Wei-Ben (Eds) Transport of Carbon and Minerals in Major World Rivers Univ. Hamburg SCOPE/UNEP Sonderbd 417–421

    Google Scholar 

  2. A.K. Aufdenkampe (2001) ArticleTitleSorptive fractionation of dissolved organic nitrogen and amino acids onto fine sediments within the Amazon Basin Limnol. Oceanogr. 46 1921–1935 Occurrence Handle1:CAS:528:DC%2BD38Xht12mtw%3D%3D

    CAS  Google Scholar 

  3. O.K. Bordowskiy (1965) ArticleTitleSources of organic matter in marine basins Mar. Geol. 3 5–31 Occurrence Handle10.1016/0025-3227(65)90003-4

    Article  Google Scholar 

  4. M.M. Brinson (1976) ArticleTitleOrganic matter losses from four watersheds in the humid tropics Limnol. Oceanogr. 21 572–582 Occurrence Handle1:CAS:528:DyaE28XlvVaitr8%3D

    CAS  Google Scholar 

  5. Central Pollution Control Board (CPCB) 1995. Basin Sub-basin Inventory of Water Pollution Godavari Basin. CPCBDelhi.

  6. E.T. Degens S. Kempe (1982) Riverine carbon – an overview E.T. Degens (Eds) Transport of Carbon and Minerals in Major World Rivers, Pt 1 Mitt. Geol.-Palaont. Inst. Univ. Hamburg SCOPE/UNEP Sonderbd 757–764

    Google Scholar 

  7. E.T. Degens S. Kempe J.E. Richey (1991) Summary: Biogeochemistry of major world rivers E.T. Degens S. Kempe J.E. Richey (Eds) Biogeochemistry of Major World Rivers SCOPEJohn Wiley and Sons London 323–347

    Google Scholar 

  8. E.T. Degens S. Kempe S. Soliman (Eds) (1983) Transport of Carbon and Minerals in Major World Rivers, Pt 2 Mitt. Geol.-Palaont. Inst. Univ. Hamburg SCOPE/UNEP Sonderbd

    Google Scholar 

  9. P.J. Depetris E.A. Cascante (1985) Carbon transport in the Parana River E.T. Degens S. Kempe S. Herrera (Eds) Transport of Carbon and Minerals in Major World Rivers Univ. Hamburg Hamburg 299–304

    Google Scholar 

  10. J. Gaillardet B. Dupre P. Louvat C.J. Allegre (1999) ArticleTitleGlobal silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers Chem. Geol. 159 3–30 Occurrence Handle10.1016/S0009-2541(99)00031-5 Occurrence Handle1:CAS:528:DyaK1MXjslGqsbw%3D

    Article  CAS  Google Scholar 

  11. L.P. Gupta V. Subramanian V. Ittekkot (1997) ArticleTitleBiogeochemistry of particulate organic matter transported by the Godavari riverIndia Biogeochemistry 38 103–128 Occurrence Handle10.1023/A:1005732519216 Occurrence Handle1:CAS:528:DyaK2sXkvFeisrY%3D

    Article  CAS  Google Scholar 

  12. J.I. Hedges W. Clark P.D. Quay J.E. Richey A.H. Devol N. Ribeiro (1986) ArticleTitleComposition and fluxes of organic matter in the Amazon river Limnol. Oceanogr. 31 717–738 Occurrence Handle1:CAS:528:DyaL28Xltl2iu7o%3D

    CAS  Google Scholar 

  13. V. Ittekkott (1988) ArticleTitleGlobal trends in the nature of organic matter in river suspensions Nature 332 436–438 Occurrence Handle10.1038/332436a0

    Article  Google Scholar 

  14. V. Ittekkott S. Zhang (1989) ArticleTitlePattern of particulate nitrogen transport in world rivers Global Biogeochem. Cycles 3 383–391

    Google Scholar 

  15. R.G. Keil D.B. Montlucon F.G. Prahl J.I. Hedges (1994) ArticleTitleSorptive preservation of labile organic matter in marine sediments Nature 370 549–552 Occurrence Handle10.1038/370549a0

    Article  Google Scholar 

  16. G.E. Likens F.T. Mackenzie J.E. Richey J.R. Sedell K.K. Turekian (Eds) (1981) Flux of Organic Carbon by Rivers to the Ocean DOEOffice Energy Res. Washington, DC

    Google Scholar 

  17. W. Ludwig J.-L. Probst S. Kempe (1996) ArticleTitlePredicting the oceanic input of organic carbon by continental erosion Global Biogeochem. Cycles 10 23–41 Occurrence Handle10.1029/95GB02925 Occurrence Handle1:CAS:528:DyaK28Xhs1GjsLo%3D

    Article  CAS  Google Scholar 

  18. W. Ludwig J.-L. Probst (1998) ArticleTitleRiver sediment discharge to the oceans: present-day controls and global budgets Am. J. Sci. 298 265–295 Occurrence Handle1:CAS:528:DyaK1cXjvVemtL8%3D

    CAS  Google Scholar 

  19. J.M. Martin M. Meybeck (1979) ArticleTitleElemental mass-balance of material carried by world major rivers Mar. Chem. 7 173–206 Occurrence Handle1:CAS:528:DyaE1MXksVChs7k%3D

    CAS  Google Scholar 

  20. O. Martins J.-L. Probst (1991) Biogeochemistry of major African rivers: carbon and mineral transport E.T. Degens S. Kempe J.E. Richey (Eds) Biogeochemistry of Major World Rivers, SCOPE Report. 42 Wiley USA 127–155

    Google Scholar 

  21. M. Meybeck (1982) ArticleTitleCarbon, nitrogen, and phosphorus transport by world rivers Am. J. Sci. 282 401–450 Occurrence Handle1:CAS:528:DyaL38Xks1Sntbk%3D

    CAS  Google Scholar 

  22. M. Meybeck (1988) How to establish and use world budgets of riverine materials A. Lerman M. Meybeck (Eds) Physical and Chemical Weathering in Geochemical Cycles Kluwer Academic Natherlands 247–272

    Google Scholar 

  23. M. Meybeck (1993) C, NP and S in rivers: from sources to global inputs R. Wollast F.T. Mackenzie L. Chou (Eds) Interactions of C, NP and S Biogeochemical Cycles and Global Change Springer-Verlag New York 163–193

    Google Scholar 

  24. P.J. Muller (1977) ArticleTitleC/N ratios in Pacific deep-sea sediments: effect of inorganic ammonium and organic nitrogen compounds sorbed by clays Geochim. Cosmochim. Acta 41 765–776 Occurrence Handle10.1016/0016-7037(77)90047-3

    Article  Google Scholar 

  25. R.R. N’ Kounkou J.L. Probst (1987) Hydrology arnd geochemistry of the Congo river system E.T. Degens S. Kempe G. Wei-Ben (Eds) Transport of Carbon and Minerals in Major World Rivers Univ. Hamburg SCOPE/UNEP Sonderbd 483–508

    Google Scholar 

  26. J.L. Probst J. Mortatti Y. Tardy (1994) ArticleTitleCarbon river fluxes and weathering CO2 consumption in the Congo and Amazon river basins Appl. Geochem. 9 1–13 Occurrence Handle10.1016/0883-2927(94)90047-7 Occurrence Handle1:CAS:528:DyaK2cXkvVOqu7o%3D

    Article  CAS  Google Scholar 

  27. K.L. Rao (1975) India’s Water Wealthits AssessmentUses and Projections Orient Longman New Delhi 255

    Google Scholar 

  28. C.V. Raman G. Krishna Rao K.S.N. Reddy M.V. Ramesh (1995) ArticleTitleClay mineral distributions in the continental shelf sediments between the Ganges mouths and Madras, east coast of India Continental Shelf Res. 15 1773–1793 Occurrence Handle10.1016/0278-4343(94)00093-3

    Article  Google Scholar 

  29. J.E. Richey R.L. Victoria (1993) C, N and P export dynamics in the Amazon river R. Wollast F.T. Mackenzie L. Chou (Eds) Interactions of C, NP and S Biogeochemical Cycles and Global Change Springer-Verlag Berlin 123–139

    Google Scholar 

  30. S. Safiullah M. Mofizuddin S.M. Iqbal-Ali S. Enamul-Kabir (1987) Biogeochemical cycles of carbon in the rivers of Bangladesh E.T. Degens S. Kempe G. Wei-Ben (Eds) Transport of Carbon and Minerals in Major World Rivers Univ. Hamburg SCOPE/UNEP Sonderbd 435–442

    Google Scholar 

  31. D.M. Silveira (1993) India Book 1993–94 Classic Publishers Goa 462

    Google Scholar 

  32. S.V. Smith J.T. Hollibaugh (1993) ArticleTitleCoastal metabolism and the oceanic organic carbon balance Rev. Geophys. 31 75–89 Occurrence Handle10.1029/92RG02584

    Article  Google Scholar 

  33. L.M.G. Ver F.T. Mackenzie A. Lerman (1999) ArticleTitleCarbon cycle in the coastal zone: effects of global perturbations and change in the past three centuries Chem. Geol. 159 283–304 Occurrence Handle10.1016/S0009-2541(99)00042-X Occurrence Handle1:CAS:528:DyaK1MXjslGqtrs%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.L. Probst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balakrishna, K., Probst, J. Organic carbon transport and C/N ratio variations in a large tropical river: Godavari as a case study, India. Biogeochemistry 73, 457–473 (2005). https://doi.org/10.1007/s10533-004-0879-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-004-0879-2

Keywords

Navigation