Skip to main content
Log in

Spatial-temporal variability of submesoscale currents in the South China Sea

  • Physics
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Spatial and seasonal variabilities of submesoscale currents in the northeastern South China Sea are investigated by employing a numerical simulation with a horizontal resolution of 1 km. The results suggest that submesoscale currents are widespread in the surface mixed layer mainly due to the mixed layer instabilities and frontogenesis. In horizontal, submesoscale currents are generally more active in the north than those in the south, since that active eddies, especially cyclonic eddies, mainly occur in the northern area. Specifically, submesoscale currents are highly intensified in the east of Dongsha Island and south of Taiwan Island. In temporal sense, submesoscale currents are more active in winter than those in summer, since the mixed layer is thicker and more unstable in the winter. The parameterization developed by Fox-Kemper et al. is examined in terms of vertical velocity, and the results suggest that it could reproduce the vertical velocity if mixed layer instability dominates there. This study improves our understanding of the submesoscale dynamics in the South China Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boccaletti G, Ferrari R, Fox–Kemper B. 2007. Mixed layer instabilities and restratification. Journal of Physical Oceanography, 37 (9): 2 228–2 250.

    Article  Google Scholar 

  • Brannigan L, Marshall D, Naveira–Garabato A, Nurser A. 2015. The seasonal cycle of submesoscale flows. Ocean Modelling, 92: 69–84.

    Article  Google Scholar 

  • Callies J, Ferrari R, Klymak J M, Gula J. 2015. Seasonality in submesoscale turbulence. Nature Communications, 6: 6862.

    Article  Google Scholar 

  • Callies J, Ferrari R. 2013. Interpreting energy and tracer spectra of upper–ocean turbulence in the submesoscale range (1–200 km). Journal of Physical Oceanography, 43 (11): 2 456–2 474.

    Article  Google Scholar 

  • Callies J, Flierl G, Ferrari R, Fox–Kemper B. 2016. The role of mixed–layer instabilities in submesoscale turbulence. Journal of Fluid Mechanics, 788: 5–41.

    Article  Google Scholar 

  • Capet X, McWilliams J C, Molemaker M J, Shchepetkin A F. 2008a. Mesoscale to submesoscale transition in the California current system. Part I: flow structure, eddy flux, and observational tests. Journal of Physical Oceanography, 38 (1): 29–43.

    Google Scholar 

  • Capet X, McWilliams J C, Molemaker M J, Shchepetkin A F. 2008b. Mesoscale to submesoscale transition in the California current system. Part II: frontal processes. Journal of Physical Oceanography, 38 (1): 44–64.

    Google Scholar 

  • Capet X, McWilliams J C, Molemaker M J, Shchepetkin A F. 2008c. Mesoscale to submesoscale transition in the California current system. Part III: energy balance and flux. Journal of Physical Oceanography, 38 (10): 2 256–2 269.

    Article  Google Scholar 

  • Charney J G. 1971. Geostrophic turbulence. Journal of the Atmospheric Sciences, 28 (6): 1 087–1 095.

    Article  Google Scholar 

  • D’Asaro E, Lee C, Rainville L, Harcourt R, Thomas L. 2011. Enhanced turbulence and energy dissipation at ocean fronts. Science, 332 (6027): 318–322.

    Article  Google Scholar 

  • Fox–Kemper B, Ferrari R, Hallberg R. 2008. Parameterization of mixed layer eddies. Part I: theory and diagnosis. Journal of Physical Oceanography, 38 (6): 1 145–1 165.

    Google Scholar 

  • Gula J, Molemaker M J, McWilliams J C. 2016. Topographic generation of submesoscale centrifugal instability and energy dissipation. Nature Communications, 7: 12 811.

    Article  Google Scholar 

  • Hoskins B J. 1982. The mathematical theory of frontogenesis. Annual Review of Fluid Mechanics, 14 (1): 131–151.

    Article  Google Scholar 

  • Ji C Z, Ye R J, Dong J H, Zhang Z W, Tian J W. 2017. The simulation of submesoscale process at the periphery of a mesoscale eddy in the South China Sea. Periodical of Ocean University of China, 47 (1): 1–6. (in Chinese with English abstract)

    Google Scholar 

  • Liu Z Y, Lozovatsky I. 2012. Upper pycnocline turbulence in the northern South China Sea. Chinese Science Bulletin, 57 (18): 2 302–2 306.

    Article  Google Scholar 

  • Luo S H, Jing Z Y, Qi Y Q, Xie Q. 2016. Numerical study on sub–mesoscale processes in the northern South China Sea. Journal of Tropical Oceanography, 35 (5): 10–19. (in Chinese with English abstract)

    Google Scholar 

  • Mahadevan A, Tandon A. 2006. An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modelling, 14 (3–4): 241–256.

    Article  Google Scholar 

  • Mahadevan A. 2006. Modeling vertical motion at ocean fronts: Are nonhydrostatic effects relevant at submesoscales? Ocean Modelling, 14 (3–4): 222–240.

    Article  Google Scholar 

  • Mason E, Molemaker J, Shchepetkin A F, Colas F, McWilliams J C, Sangrà P. 2010. Procedures for offline grid nesting in regional ocean models. Ocean Modelling, 35 (1–2): 1–15.

    Article  Google Scholar 

  • McGillicuddy D J, Robinson A R, Siegel D A, Jannasch H W, Johnson R, Dickey T D, McNeil J, Michaels A F, Knap A H. 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394 (6690): 263–266.

    Article  Google Scholar 

  • McWilliams J C. 2016. Submesoscale currents in the ocean. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 472 (2189): 20160117.

    Article  Google Scholar 

  • Orlanski I. 1976. A simple boundary condition for unbounded hyperbolic flows. Journal of Computational Physics, 21 (3): 251–269.

    Article  Google Scholar 

  • Oschlies A. 2008. Eddies and upper–ocean nutrient supply. In: Hecht M, Hasumi H eds. Ocean Modeling in an Eddying Regime. Washington: Blackwell Publishing Ltd., 177: 115–130.

    Article  Google Scholar 

  • Pollard R T, Regier L A. 1992. Vorticity and vertical circulation at an ocean front. Journal of Physical Oceanography, 22 (6): 609–625.

    Article  Google Scholar 

  • Qiu B, Chen S M, Klein P, Sasaki H, Sasai Y. 2014. Seasonal mesoscale and submesoscale eddy variability along the North Pacific subtropical countercurrent. Journal of Physical Oceanography, 44 (12): 3 079–3 098.

    Article  Google Scholar 

  • Ramp S R, Yang Y J, Bahr F L. 2010. Characterizing the nonlinear internal wave climate in the northeastern South China Sea. Nonlinear Processes in Geophysics, 17 (5): 481–498.

    Article  Google Scholar 

  • Roullet G, McWilliams J C, Capet X, Molemaker M J. 2012. Properties of steady geostrophic turbulence with isopycnal outcropping. Journal of Physical Oceanography, 42 (1): 18–38.

    Article  Google Scholar 

  • Sasaki H, Klein P, Qiu B, Sasai Y. 2014. Impact of oceanicscale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nature Communications, 5: 5636.

    Article  Google Scholar 

  • Shang X D, Liang C R, Chen G Y. 2017. Spatial distribution of turbulent mixing in the upper ocean of the South China Sea. Ocean Science, 13 (3): 503–519.

    Article  Google Scholar 

  • Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS): a split–explicit, free–surface, topography–following–coordinate oceanic model. Ocean Modelling, 9 (4): 347–404.

    Article  Google Scholar 

  • Taylor J R, Ferrari R. 2011. Ocean fronts trigger high latitude phytoplankton blooms. Geophysical Research Letters, 38 (23): L23601.

    Book  Google Scholar 

  • Thomas L N, Tandon A, Mahadevan A. 2008. Submesoscale processes and dynamics. In: Hecht M, Hasumi H eds. Ocean Modeling in an Eddying Regime. Washington: Blackwell Publishing Ltd., 177: 17–38.

    Article  Google Scholar 

  • Thomas L N, Taylor J R, Ferrari R, Joyce T M. 2013. Symmetric instability in the Gulf Stream. Deep Sea Research Part II: Topical Studies in Oceanography, 91: 96–110.

    Article  Google Scholar 

  • Uchida T, Abernathey R, Smith S. 2017. Seasonality of eddy kinetic energy in an eddy permitting global climate model. Ocean Modelling, 118: 41–58.

    Article  Google Scholar 

  • Umlauf L, Burchard H. 2003. A generic length–scale equation for geophysical turbulence models. Journal of Marine Research, 61 (2): 235–265.

    Article  Google Scholar 

  • Wang G H, Su J L, Chu P C. 2003. Mesoscale eddies in the South China Sea observed with altimeter data. Geophysical Research Letters, 30 (21): 2121.

    Article  Google Scholar 

  • Xie X H, Shang X D, Chen G Y, Sun L. 2009. Variations of diurnal and inertial spectral peaks near the bi–diurnal critical latitude. Geophysical Research Letters, 36(2): L02606.

    Book  Google Scholar 

  • Yang Q X, Zhao W, Liang X F, Dong J H, Tian J W. 2017. Elevated mixing in the periphery of mesoscale eddies in the South China Sea. Journal of Physical Oceanography, 47 (4): 895–907.

    Article  Google Scholar 

  • Yang Q X, Zhao W, Liang X F, Tian J W. 2016. Threedimensional distribution of turbulent mixing in the South China Sea. Journal of Physical Oceanography, 46 (3): 769–788.

    Article  Google Scholar 

  • Zhang Z W, Tian J W, Qiu B, Zhao W, Chang P, Wu D X, Wan X Q. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Science Reports, 6: 24349.

    Article  Google Scholar 

  • Zheng Q A, Lin H, Meng J M, Hu X M, Song Y T, Zhang Y Z, Li C Y. 2008. Sub–mesoscale ocean vortex trains in the Luzon Strait. Journal of Geophysical Research: Oceans, 113 (C4): C04032.

    Book  Google Scholar 

  • Zhong Y S, Bracco A, Tian J W, Dong J H, Zhao W, Zhang Z W. 2017. Observed and simulated submesoscale vertical pump of an anticyclonic eddy in the South China Sea. Science Reports, 7: 44011.

    Article  Google Scholar 

  • Zhong Y S, Bracco A. 2013. Submesoscale impacts on horizontal and vertical transport in the Gulf of Mexico. Journal of Geophysical Research: Oceans, 118 (10): 5 651–5 668.

    Google Scholar 

  • Zhou C, Zhao W, Tian J W, Yang Q X, Qu T D. 2014. Variability of the deep–water overflow in the Luzon Strait. Journal of Physical Oceanography, 44 (11): 2 972–2 986.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingxuan Yang.

Additional information

Supported by the Natural Science Foundation of China (No. 41576009), the National Key Research and Development Program (No. 2016YFC1401403), the State Key Laboratory of Tropical Oceanography, and the Global Change and Air-Sea Interaction Project (Nos. GASIIPOVAI-01-03, GASI-IPOVAI-01-02).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Dong, J., Yang, Q. et al. Spatial-temporal variability of submesoscale currents in the South China Sea. J. Ocean. Limnol. 37, 474–485 (2019). https://doi.org/10.1007/s00343-019-8077-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-8077-1

Keyword

Navigation