Skip to main content
Log in

The spatiotemporal features of submesoscale processes in the northeastern South China Sea

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The spatiotemporal features of submesoscale processes (SMPs) in the northeastern South China Sea (SCS) are analyzed based on a high-resolution simulation from 2009 to 2012. The simulation results show that the SMPs with a vertical relative vorticity that matches the local planetary vorticity are ubiquitous in the upper ocean of the northeastern SCS. The SMPs distribution shows an asymmetry due to centrifugal instability, with stronger positive vorticity than negative vorticity. Meanwhile, the SMPs demonstrate an obvious seasonal variation. The SMPs are strong and active in winter but weak and inactive in summer. An investigation of the SMPs generation mechanisms reveals that flow straining and mixed layer depth account for this seasonal variation. The strong flow straining and deep mixed layer depth in winter favor the SMP generation via frontogenesis and mixed layer instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alford M H, Peacock T, MacKinnon J A, et al. 2015. The formation and fate of internal waves in the South China Sea. Nature, 521 (7550): 65–69, doi: 10.1038/nature14399

    Article  Google Scholar 

  • Boccaletti G, Ferrari R, Fox-Kemper B. 2007. Mixed layer instabilities and restratification. Journal of Physical Oceanography, 37(9): 2228–2250, doi: 10.1175/JPO3101.1

    Article  Google Scholar 

  • Buckingham C E, Naveira Garabato A C, Thompson A F, et al. 2016. Seasonality of submesoscale flows in the ocean surface boundary layer. Geophysical Research Letters, 43(5): 2118–2116, doi: 10.1002/2016GL068009

    Article  Google Scholar 

  • Callies J, Ferrari R, Klymak J M, et al. 2015. Seasonality in submesoscale turbulence. Nature Communications, 6: 6862, doi: 10.1038/ncomms7862

    Article  Google Scholar 

  • Capet X, McWilliams J C, Molemaker M J, et al. 2008a. Mesoscale to submesoscale transition in the California current system. Part I: Flow structure, eddy flux, and observational tests. Journal of Physical Oceanography, 38(1): 29–43, doi: 10.1175/2007JPO3671.1

    Article  Google Scholar 

  • Capet X, McWilliams J C, Molemaker M J, et al. 2008b. Mesoscale to submesoscale transition in the California current system. Part II: Frontal processes. Journal of Physical Oceanography, 38(1): 44–64, doi: 10.1175/2007JPO3672.1

    Article  Google Scholar 

  • Capet X, McWilliams J C, Molemaker M J, et al. 2008c. Mesoscale to submesoscale transition in the California current system. Part III: Energy balance and flux. Journal of Physical Oceanography, 38(10): 2256–2269, doi: 10.1175/2008JPO3810.1

    Article  Google Scholar 

  • Chen Gengxin, Hou Yinjun, Chu Xiaoqing. 2011. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. Journal of Geophysical Research: Oceans, 116(C6): C06018

    Google Scholar 

  • Chen Gengxin, Hou Yijun, Chu Xiaoqing, et al. 2009. The variability of eddy kinetic energy in the South China Sea deduced from satellite altimeter data. Chinese Journal of Oceanology and Limnology, 27(4): 943–954, doi: 10.1007/s00343-009-9297-6

    Article  Google Scholar 

  • Cheng Xuhua, Qi Yiquan. 2010. Variations of eddy kinetic energy in the South China Sea. Journal of Oceanography, 66(1): 85–94, doi: 10.1007/s10872-010-0007-y

    Article  Google Scholar 

  • Dong Changming, Mcwilliams J C, Shchepetkin A F. 2007. Island wakes in deep water. Journal of Physical Oceanography, 37(4): 962–981, doi: 10.1175/JPO3047.1

    Article  Google Scholar 

  • Gula J, Molemaker M J, McWilliams J C. 2016. Topographic generation of submesoscale centrifugal instability and energy dissipation. Nature Communications, 7: 12811, doi: 10.1038/ncomms12811

    Article  Google Scholar 

  • Hoskins B J. 1982. The mathematical theory of frontogenesis. Annual Review of Fluid Mechanics, 14(1): 131–151, doi: 10.1146/annurev.fl.14.010182.001023

    Article  Google Scholar 

  • Huang Xiaodong, Chen Zhaohui, Zhao Wei, et al. 2016. An extreme internal solitary wave event observed in the northern South China Sea. Scientific Reports, 6: 30041, doi: 10.1038/srep30041

    Article  Google Scholar 

  • Johnson K S, Riser S C, Karl D M. 2010. Nitrate supply from deep to near-surface waters of the north Pacific subtropical gyre. Nature, 465: 1062–1065, doi: 10.1038/nature09170

    Article  Google Scholar 

  • Klein P, Hua B L, Lapeyre G, et al. 2008. Upper ocean turbulence from high-resolution 3D simulations. Journal of Physical Oceanography, 38(8): 1748–1763, doi: 10.1175/2007JPO3773.1

    Article  Google Scholar 

  • Lapeyre G, Klein P. 2006. Impact of the small-scale elongated filaments on the oceanic vertical pump. Journal of Marine Research, 64(6): 835–851, doi: 10.1357/002224006779698369

    Article  Google Scholar 

  • Lévy M, Ferrari R, Franks P J S, et al. 2012. Bringing physics to life at the submesoscale. Geophysical Research Letters, 39(14): L14602

    Article  Google Scholar 

  • Lévy M, Klein P, Tréguier A M. 2001. Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. Journal of Marine Research, 59(4): 535–565, doi: 10.1357/002224001762842181

    Article  Google Scholar 

  • Lévy M, Klein P, Tréguier A M, et al. 2010. Modifications of gyre circulation by sub-mesoscale physics. Ocean Modelling, 34(1–2): 1–15, doi: 10.1016/j.ocemod.2010.04.001

    Article  Google Scholar 

  • Liu Q, Kaneko A, Su J. 2008. Recent progress in studies of the South China Sea circulation. Journal of Oceanography, 64(5): 753–762, doi: 10.1007/s10872-008-0063-8

    Article  Google Scholar 

  • Mahadevan A. 2006. Modeling vertical motion at ocean fronts: are nonhydrostatic effects relevant at submesoscales? Ocean Modelling, 14(3–4): 222–240, doi: 10.1016/j.ocemod.2006.05.005

  • Mensa J A, Garraffo Z, Griffa A, et al. 2013. Seasonality of the submesoscale dynamics in the gulf stream region. Ocean Dynamics, 63(8): 923–941, doi: 10.1007/s10236-013-0633-1

    Article  Google Scholar 

  • Nan Feng, Xue Huijie, Xiu Peng, et al. 2011. Oceanic eddy formation and propagation southwest of Taiwan. Journal of Geophysical Research: Oceans, 116(C12): C12045, doi: 10.1029/2011JC007386

    Article  Google Scholar 

  • Pollard R T, Regier L A. 1992. Vorticity and vertical circulation at an ocean front. Journal of Physical Oceanography, 22(6): 609–625, doi: 10.1175/1520-0485(1992)022<0609:VAVCAA>2.0.CO;2

    Article  Google Scholar 

  • Rosso I, Hogg A M, Kiss A E, et al. 2015. Topographic influence on submesoscale dynamics in the Southern Ocean. Geophysical Research Letters, 42(4): 1139–1147, doi: 10.1002/2014GL062720

    Article  Google Scholar 

  • Shcherbina A Y, D'Asaro E A, Lee C M, et al. 2013. Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophysical Research Letters, 40(17): 4706–4711, doi: 10.1002/grl.50919

    Article  Google Scholar 

  • Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topographyfollowing-coordinate oceanic model. Ocean Modelling, 9(4): 347–404, doi: 10.1016/j.ocemod.2004.08.002

    Article  Google Scholar 

  • Shu Yeqiang, Xiu Peng, Xue Huijie, et al. 2016. Glider-observed anticyclonic eddy in northern South China Sea. Aquatic Ecosystem Health & Management, 19(3): 233–241

    Article  Google Scholar 

  • Wang Guihua, Chen Dake, Su Jilan. 2008. Winter eddy genesis in the eastern South China Sea due to orographic wind jets. Journal of Physical Oceanography, 38(3): 726–732, doi: 10.1175/2007JPO3868.1

    Article  Google Scholar 

  • Xia Changshui, Jung K T, Wang Guansuo, et al. 2016. Case study on the three-dimensional structure of meso-scale eddy in the South China Sea based on a high-resolution model. Acta Oceanologica Sinica, 35(2): 29–38, doi: 10.1007/s13131-016-0805-1

    Article  Google Scholar 

  • Yang Qingxuan, Zhao Wei, Liang Xinfeng, et al. 2016. Three-dimensional distribution of turbulent mixing in the South China Sea. Journal of Physical Oceanography, 46(3): 769–788, doi: 10.1175/JPO-D-14-0220.1

    Article  Google Scholar 

  • Yang Qingxuan, Zhao Wei, Liang Xinfeng, et al. 2017. Elevated mixing in the periphery of mesoscale eddies in the South China Sea. Journal of Physical Oceanography, 47(4): 895–907, doi: 10.1175/JPO-D-16-0256.1

    Article  Google Scholar 

  • Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Scientific Reports, 6: 24349, doi: 10.1038/srep24349

    Article  Google Scholar 

  • Zhang Zhiwei, Zhao Wei, Tian Jiwei, et al. 2013. A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. Journal of Geophysical Research: Oceans, 118(12): 6479–6494, doi: 10.1002/2013JC008994

    Google Scholar 

  • Zheng Quanan, Lin Hui, Meng Junmin, et al. 2008. Sub-mesoscale ocean vortex trains in the Luzon Strait. Journal of Geophysical Research: Oceans, 113(C4): C04032

    Article  Google Scholar 

  • Zhong Yisen, Bracco A, Tian Jiwei, et al. 2017. Observed and simulated submesoscale vertical pump of an anticyclonic eddy in the South China Sea. Scientific Reports, 7: 44011, doi: 10.1038/srep44011

    Article  Google Scholar 

  • Zu Tingting, Wang Dongxiao, Yan Changxiang, et al. 2013. Evolution of an anticyclonic eddy southwest of Taiwan. Ocean Dynamics, 63(5): 519–531, doi: 10.1007/s10236-013-0612-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihai Dong.

Additional information

Foundation item: The National Key Research and Development Program of China under contract No. 2017YFA0604103; the National Basic Research Program (973 Program) of China under contract No. 2014CB745003; the National Natural Science Foundation of China under contract No. 91628302; the Startup Foundation for the Introducing Talent of the Nanjing University of Information Science and Technology under contract No. 2243141601059.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Zhong, Y. The spatiotemporal features of submesoscale processes in the northeastern South China Sea. Acta Oceanol. Sin. 37, 8–18 (2018). https://doi.org/10.1007/s13131-018-1277-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-018-1277-2

Key words

Navigation