Skip to main content
Log in

Genome-wide identification and transcriptome-based expression analysis of sox gene family in the Japanese flounder Paralichthys olivaceus

  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Sox genes are transcription factors that ubiquitously exist in animal species, and share a conserved high mobility group (HMG) box. They play important biological roles in diverse developmental processes, such as sex determination and differentiation, chondrogenesis, neurogenesis, and early embryonic development. In this study, we identified 25 sox genes from genome and transcriptome of Japanese flounder Paralichthys olivaceus. These sox genes could be mainly classified into seven subfamilies (B1, B2, C, D, E, F, and K), and each subfamily exhibited a relatively conserved gene structure. Besides, subfamilies A and G were found exclusively in human and mouse, and sox 32 in subfamily K only existed in teleosts. Compared with other mammals, some sox genes in teleosts had two duplicates. The loss, duplication, and divergence of sox genes during evolution provided an evidence for whole-genome duplication that occurred in the radiation of teleosts. The expression of Japanese flounder sox genes was also analyzed by FPKM value. Our results showed that certain sox genes exhibited obviously tissue-specific and spatio-temproal expression. Especially, gonal-basied expression analysis uncovered that sox7 and sox2 were ovary-biased, and sox8b was testis-biased. Moreover, sox10a was expressed specifically in ovary, and sox8a in testis. Therefore this study provide a solid foundation for future functional and evolutionary analysis of sox genes in Japanese flounder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul S F, Madden T L, Schäffer A A, Zhang J H, Zhang Z, Miller W, Lipman D J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic A cids R esearch, 25(17): 3 389–3 402.

    Google Scholar 

  • Amores A, Catchen J, Ferrara A, Fontenot Q, Postlethwait J H. 2011. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics, 188(4): 799–808.

    Article  Google Scholar 

  • Barrionuevo F, Scherer G. 2010. SOX E genes: SOX9 and SOX8 in mammalian testis development. The International Journal of Biochemistry & Cell Biology, 42(3): 433–436.

    Article  Google Scholar 

  • Bowles J, Schepers G, Koopman P. 2000. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Developmental Biology, 227(2): 239–255.

    Google Scholar 

  • Bylund M, Andersson E, Novitch B G, Muhr J. 2003. Vertebrate neurogenesis is counteracted by Sox1–3 activity. Nature Neuroscience, 6(11): 1 162–1 168.

    Article  Google Scholar 

  • C. elegans Sequencing Consortium. 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science, 282(5396): 2 012–2 018.

    Article  Google Scholar 

  • Cermenati S, Moleri S, Cimbro S, Corti P, Del Giacco L, Amodeo R, Dejana E, Koopman P, Cotelli F, Beltrame M. 2008. Sox18 and Sox7 play redundant roles in vascular development. Blood, 111(5): 2 657–2 666.

    Article  Google Scholar 

  • Chung I, Leung A, Ma C, Fung T. 2010. The role of Sox genes (Group F) in zebrafish hematopoiesis. Experimental Hematology, 38(9S): S71–S72.

    Google Scholar 

  • Chung M I S, Ma A C H, Fung T K, Leung A Y H. 2011. Characterization of Sry–related HMG box group F genes in zebrafish hematopoiesis. Experimental H ematology, 39(10): 986–998.e5.

    Google Scholar 

  • Crémazy F, Berta P, Girard F. 2001. Genome–wide analysis of Sox genes in Drosophila melanogaster. Mechanisms of D evelopment, 109(2): 371–375.

    Google Scholar 

  • Cui J, Shen X, Zhao H, Nagahama Y. 2011. Genome–wide analysis of Sox genes in Medaka( Oryzias latipes ) and their expression pattern in embryonic development. Cytogenetic and genome research, 134(4): 283–294.

    Article  Google Scholar 

  • Downes M, Koopman P. 2001. SOX18 and the transcriptional regulation of blood vessel development. Trends in C ardiovascular M edicine, 11(8): 318–324.

    Google Scholar 

  • Fei H, Wang Z J, Wu F R, Liu Z H, Huang B F, Wang D S. 2010. Characterization, phylogeny, alternative splicing and expression of Sox30 gene. BMC Molecular Biology, 11: 98.

    Article  Google Scholar 

  • Force A, Lynch M, Pickett F B, Amores A, Yan Y L, Postlethwait J. 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics, 151(4): 1 531–1 545.

    Google Scholar 

  • Fortunato S, Adamski M, Bergum B, Guder C, Jordal S, Leininger S, Zwafink C, Rapp H, Adamska M. 2012. Genome–wide analysis of the sox family in the calcareous sponge Sycon ciliatum: multiple genes with unique expression patterns. EvoDevo, 3(1): 14.

    Article  Google Scholar 

  • Foster J W, Dominguez–Steglich M A, Guioli S, Kwok C, Weller P A, Stevanović M, Weissenbach J, Mansour S, Young I D, Goodfellow P N, Brook J D, Schafer A J. 1994. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY–related gene. Nature, 372(6506): 525–530.

    Article  Google Scholar 

  • Gao J N, Li P Z, Zhang W, Wang Z G, Wang X B, Zhang Q Q. 2015. Molecular cloning, promoter analysis and expression profiles of the sox3 gene in Japanese Flounder, Paralichthys olivaceus. International Journal of Molecular Sciences, 16(11): 27 931–27 944.

    Article  Google Scholar 

  • Gao J, Ma J L, Liu Y, Shao C W, Jia X D, Chen S L. 2016. Bioinformatics analysis of Sox gene family in Cynoglossus semilaevis. Progress in Fishery Sciences, 37(2): 41–48. (in Chinese with English abstract)

    Google Scholar 

  • Garber M, Grabherr M G, Guttman M, Trapnell C. 2011. Computational methods for transcriptome annotation and quantification using RNA–seq. Nature M ethods, 8(6): 469–477.

    Google Scholar 

  • Glasauer S M K, Neuhauss S C F. 2014. Whole–genome duplication in teleost fishes and its evolutionary consequences. Molecular G enetics and G enomics, 289(6): 1 045–1 060.

    Google Scholar 

  • Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Münsterberg A, Vivian N, Goodfellow P, Lovell–Badge R. 1990. A gene mapping to the sex–determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature, 346(6281): 245–250.

    Article  Google Scholar 

  • Han F, Dong Y, Liu W B, Ma X X, Shi R H, Chen H Q, Cui Z H, Ao L, Zhang H D, Cao J, Liu J Y, Lobaccaro J M A. 2014. Epigenetic regulation of Sox30 is associated with testis development in mice. PLoS One, 9(5): e97203.

    Article  Google Scholar 

  • Hart T, Komori H K, LaMere S, Podshivalova K, Salomon D R. 2013. Finding the active genes in deep RNA–seq gene expression studies. BMC G enomics, 14(1): 778.

    Article  Google Scholar 

  • Hermansen R A, Hvidsten T R, Sandve S R, Liberles D A. 2016. Extracting functional trends from whole genome duplication events using comparative genomics. Biological Procedures Online, 18(1): 11.

    Article  Google Scholar 

  • Herpers R, van de Kamp E, Duckers H J, Schulte–Merker S. 2008. Redundant roles for S ox7 and S ox18 in arteriovenous specification in zebrafish. Circulation R esearch, 102(1): 12–15.

    Google Scholar 

  • Hu B, Jin J, Guo A Y, Zhang H, Luo J, Gao G. 2015. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 31(8): 1 296–1 297.

    Article  Google Scholar 

  • Irrthum A, Devriendt K, Chitayat D, Matthijs G, Glade C, Steijlen P M, Fryns J P, Van Steensel M A, Vikkula M. 2003. Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosislymphedema–telangiectasia. The American Journal of Human Genetics, 72(6): 1 470–1 478.

    Article  Google Scholar 

  • Jay P, Sahly I, Gozé C, Taviaux S, Poulat F, Couly G, Abitbol M, Berta P. 1997. SOX22 is a new member of the SOX gene family, mainly expressed in human nervous tissue. Human Molecular Genetics, 6(7): 1 069–1 077.

    Article  Google Scholar 

  • Jiang T, Hou C C, She Z Y, Yang W X. 2013. The SOX gene family: function and regulation in testis determination and male fertility maintenance. Molecular Biology R eports, 40(3): 2 187–2 194.

    Google Scholar 

  • Kamachi Y, Uchikawa M, Kondoh H. 2000. Pairing SOX off: with partners in the regulation of embryonic development. Trends in Genetics, 16(4): 182–187.

    Article  Google Scholar 

  • Kanai Y, Kanai–Azuma M, Noce T, Saido T C, Shiroishi T, Hayashi Y, Yazaki K. 1996. Identification of two Sox17 messenger RNA isoforms, with and without the high mobility group box region, and their differential expression in mouse spermatogenesis. The Journal of Cell Biology, 133(3): 667–681.

    Article  Google Scholar 

  • Kanda H, Kojima M, Miyamoto N, Ito M, Takamatsu N, Yamashita S, Shiba T. 1998. Rainbow trout Sox24, a novel member of the Sox family, is a transcriptional regulator during oogenesis. Gene, 211(2): 251–257.

    Article  Google Scholar 

  • Kersanach R, Brinkmann H, Liaud M F, Zhang D X, Martin W, Cerff R. 1994. Five identical intron positions in ancient duplicated genes of eubacterial origin. Nature, 367(6461): 387–389.

    Article  Google Scholar 

  • Kikuchi Y, Agathon A, Alexander J, Thisse C, Waldron S, Yelon D, Thisse B, Stainier D Y. 2001. casanova encodes a novel Sox–related protein necessary and sufficient for early endoderm formation in zebrafish. Genes & Development, 15(12): 1 493–1 505.

    Article  Google Scholar 

  • Koopman P, Schepers G, Brenner S, Venkatesh B. 2004. Origin and diversity of the SOX transcription factor gene family: genome–wide analysis in Fugu rubripes. Gene, 328: 177–186.

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7. 0 for bigger datasets. Molecular Biology and E volution, 33(7): 1 870–1 874.

    Google Scholar 

  • Liu Q Y, Lu H J, Zhang L H, Xie J, Shen W Y, Zhang W M. 2012. Homologues of sox8 and sox10 in the orangespotted grouper Epinephelus coioides: sequences, expression patterns, and their effects on cyp19a1a promoter activities in vitro. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 163(1): 86–95.

    Article  Google Scholar 

  • Luckenbach J A, Early L W, Rowe A H, Borski R J, Daniels H V, Godwin J. 2005. Aromatase cytochrome P450: cloning, intron variation, and ontogeny of gene expression in southern flounder( Paralichthys lethostigma ). Journal of Experimental Zoology Part A: Comparative Experimental Biology, 303(8): 643–656.

    Article  Google Scholar 

  • Magie C R, Pang K, Martindale M Q. 2005. Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis. Development G enes and E volution, 215(12): 618–630.

    Google Scholar 

  • Matsui T, Kanai–Azuma M, Hara K, Matoba S, Hiramatsu R, Kawakami H, Kurohmaru M, Koopman P, Kanai Y. 2006. Redundant roles of Sox17 and Sox18 in postnatal angiogenesis in mice. Journal of Cell Sci ence, 119(17): 3 513–3 526.

    Article  Google Scholar 

  • Nagai K. 2001. Molecular evolution of Sry and Sox gene. Gene, 270(1–2): 161–169.

    Article  Google Scholar 

  • Nakamura S, Watakabe I, Nishimura T, Toyoda A, Taniguchi Y, Tanaka M. 2012. Analysis of medaka sox9 orthologue reveals a conserved role in germ cell maintenance. PLoS One, 7(1): e29982.

    Article  Google Scholar 

  • Ng L J, Wheatley S, Muscat G E O, Conway–Campbell J, Bowles J, Wright E, Bell D M, Tam P P L, Cheah K S E, Koopman P. 1997. SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Developmental Biology, 183(1): 108–121.

    Article  Google Scholar 

  • Ohe K, Tamai K T, Parvinen M, Sassone–Corsi P. 2009. DAX–1 and SOX6 molecular interplay results in an antagonistic effect in pre–mRNA splicing. Developmental Dynamics, 238(6): 1 595–1 604.

    Article  Google Scholar 

  • Pennisi D, Gardner J, Chambers D, Hosking B, Peters J, Muscat G, Abbott C, Koopman P. 2000. Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice. Nature G enetics, 24(4): 434–437.

    Article  Google Scholar 

  • Popovic J, Stanisavljevic D, Schwirtlich M, Klajn A, Marjanovic J, Stevanovic M. 2014. Expression analysis of SOX14 during retinoic acid induced neural differentiation of embryonal carcinoma cells and assessment of the effect of its ectopic expression on SOXB members in HeLa cells. PLoS One, 9(3): e91852.

    Article  Google Scholar 

  • Roose J, Korver W, De Boer R, Kuipers J, Hurenkamp J, Clevers H. 1999. The Sox–13 gene: structure, promoter characterization, and chromosomal localization. Genomics, 57(2): 301–305.

    Article  Google Scholar 

  • Saitou N, Nei M. 1987. The neighbor–joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and E volution, 4(4): 406–425.

    Google Scholar 

  • Sánchez–Soriano N, Russell S. 2000. Regulatory mutations of the Drosophila Sox gene Dichaete reveal new functions in embryonic brain and hindgut development. Developmental Biology, 220(2): 307–321.

    Google Scholar 

  • Sarraj M A, Wilmore H P, McClive P J, Sinclair A H. 2003. Sox15 is up regulated in the embryonic mouse testis. Gene E xpression P atterns, 3(4): 413–417.

    Article  Google Scholar 

  • Schepers G E, Teasdale R D, Koopman P. 2002. Twenty Pairs of Sox: extent, homology, and nomenclature of the mouse and human Sox transcription factor gene families. Developmental C ell, 3(2): 167–170.

    Google Scholar 

  • Shin C H, Chung W S, Hong S K, Ober E A, Verkade H, Field H A, Huisken J, Stainier D Y R. 2008. Multiple roles for Med12 in vertebrate endoderm development. Developmental Biology, 317(2): 467–479.

    Article  Google Scholar 

  • Sinclair A H, Berta P, Palmer M S, Hawkins J R, Griffiths B L, Smith M J, Foster J W, Frischauf A M, Lovell–Badge R, Goodfellow P N. 1990. A gene from the human sexdetermining region encodes a protein with homology to a conserved DNA–binding motif. Nature, 346(6281): 240–244.

    Article  Google Scholar 

  • Tanimura N, Saito M, Ebisuya M, Nishida E, Ishikawa F. 2013. Stemness–related factor Sall4 interacts with transcription factors Oct–3/4 and Sox2 and occupies Oct–Sox elements in mouse embryonic stem cells. Journal of Biological Chemistry, 288(7): 5 027–5 038.

    Article  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimentel H, Salzberg S L, Rinn J L, Pachter L. 2012. Differential gene and transcript expression analysis of RNA–seq experiments with TopHat and Cufflinks. Nature P rotocols, 7(3): 562–578.

    Article  Google Scholar 

  • Tsagaratou A, Äijö T, Lio C W J, Yue X, Huang Y, Jacobsen S E, Lähdesmäki H, Rao A. 2014. Dissecting the dynamic changes of 5–hydroxymethylcytosine in T–cell development and differentiation. Proceedings of the National Academy of Sciences of the United States of America, 111(32): e3306–E3315.

    Article  Google Scholar 

  • Vidal V P I, Chaboissier M C, de Rooij D G, Schedl A. 2001. Sox9 induces testis development in XX transgenic mice. Nature G enetics, 28(3): 216–217.

    Article  Google Scholar 

  • Vriz S, Joly C, Boulekbache H, Condamine H. 1996. Zygotic expression of the zebrafish Sox–19, an HMG boxcontaining gene, suggests an involvement in central nervous system development. Molecular B rain R esearch, 40(2): 221–228.

    Google Scholar 

  • Wang R, Cheng H H, Guo Y Q, Zhou R J. 2002. Phylogenic analysis of the Sox gene family of vertebrate. Acta Genetica Sinica, 29(11): 990–994.(in Chinese with English abstract)

    Google Scholar 

  • Wang Y, Ristevski S, Harley V R. 2006. SOX13 exhibits a distinct spatial and temporal expression pattern during chondrogenesis, neurogenesis, and limb development. Journal of Histochemistry & Cytochemistry, 54(12): 1 327–1 333.

    Article  Google Scholar 

  • Wegner M. 2011. SOX after SOX: SOX ession regulates neurogenesis. Genes & D evelopment, 25(23): 2 423–2 428.

    Article  Google Scholar 

  • Wei L, Yang C, Tao W J, Wang D S. 2016. Genome–wide identification and transcriptome–based expression profiling of the Sox gene family in the Nile Tilapia ( Oreochromis niloticus ). International Journal of Molecular Sciences, 17(3): 270.

    Google Scholar 

  • Weitschek E, Fiscon G, Fustaino V, Felici G, Bertolazzi P. 2015. Clustering and classification techniques for gene expression profile pattern analysis. In: Elloumi M, Iliopoulos C, Wang J T L, Zomaya A Y eds. Pattern Recognition in Computational Molecular Biology: Techniques and Approaches. Wiley, Hoboken, New Jersey. p.347.

  • Wilson M J, Dearden P K. 2008. Evolution of the insect Sox genes. BMC E volutionary Biology, 8(1): 120.

    Google Scholar 

  • Wunderle V M, Critcher R, Ashworth A, Goodfellow P N. 1996. Cloning and characterization of SOX5, a new member of the human SOX gene family. Genomics, 36(2): 354–358.

    Article  Google Scholar 

  • Zhang C, Basta T, Klymkowsky M W. 2005. SOX7 and SOX18 are essential for cardiogenesis in Xenopus. Developmental D ynamics, 234(4): 878–891.

    Google Scholar 

  • Zhang J, Hu Y H, Sun B G, Xiao Z Z, Sun L. 2013. Selection of normalization factors for quantitative real time RTPCR studies in Japanese flounder( Paralichthys olivaceus ) and turbot( Scophthalmus maximus ) under conditions of viral infection. Vet erinary Immunol ogy and Immunopathol ogy, 152(3–4): 303–316.

    Article  Google Scholar 

  • Zhang L H, Lin D, Zhang Y, Ma G Z, Zhang W M. 2008. A homologue of Sox11 predominantly expressed in the ovary of the orange–spotted grouper Epinephelus coioides. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 149(2): 345–353.

    Article  Google Scholar 

  • Zhang W, Liu Y Z, Yu H Y, Du X X, Zhang Q Q, Wang X B, He Y. 2016. Transcriptome analysis of the gonads of olive flounder( Paralichthys olivaceus ). Fish P hysiology and B iochemistry, 42(6): 1 581–1 594.

    Google Scholar 

  • Zuckerkandl E, Pauling L. 1965. Evolutionary divergence and convergence in proteins. In: Evolving Genes and Proteins. Academic Press, New York. p.97–166.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xubo Wang  (王旭波).

Additional information

Supported by the National Natural Science Foundation of China (No. 31672646) and the Fundamental Research Funds for the Central Universities (No. 201762016)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Du, X., Li, X. et al. Genome-wide identification and transcriptome-based expression analysis of sox gene family in the Japanese flounder Paralichthys olivaceus. J. Ocean. Limnol. 36, 1731–1745 (2018). https://doi.org/10.1007/s00343-018-7216-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-018-7216-4

Keyword

Navigation