Skip to main content
Log in

SetDB1 and Su(var)3-9 are essential for late stages of larval development of Drosophila melanogaster

  • Research
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Methylation of H3K9 histone residue is a marker of gene silencing in eukaryotes. Three enzymes responsible for adding this modification — G9a, SetDB1/Egg, and Su(var)3-9 — are known in Drosophila. To understand how simultaneous mutations of SetDB1 and Su(var)3-9 may affect the fly development, appropriate combinations were obtained. Double mutants egg; Su(var)3-9 displayed pronounced embryonic lethality, slower larval growth and died before or during metamorphosis. Analysis of transcription in larval salivary glands and wing imaginal disks indicated that the effect of double mutation is tissue-specific. In salivary gland chromosomes, affected genes display low H3K9me2 enrichment and are rarely bound by SetDB1 or Su(var)3-9. We suppose that each of these enzymes directly or indirectly controls its own set of gene targets in different organs, and double mutation results in an imbalanced developmental program. This also indicates that SetDB1 and Su(var)3-9 may affect transcription via H3K9-independent mechanisms. Unexpectedly, in double and triple mutants, amount of di- and tri-methylated H3K9 is drastically reduced, but not completely absent. We hypothesize that this residual methylation implies the existence of additional H3K9-specific methyltransferase in Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

RNA-seq data have been deposited in the GEO under accession number GSE223579.

References

  • Andersen EC, Horvitz HR (2007) Two C. elegans histone methyltransferases repress lin-3 EGF transcription to inhibit vulval development. Development 134:2991–2999

    Article  CAS  PubMed  Google Scholar 

  • Bharadwaj R, Peter CJ, Jiang Y, Roussos P, Vogel-Ciernia A, Shen EY, Mitchell AC, Mao W, Whittle C, Dincer A et al (2014) Conserved higher-order chromatin regulates NMDA receptor gene expression and cognition. Neuron 84:997–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48:491–507

    Article  CAS  PubMed  Google Scholar 

  • Brower-Toland B, Riddle NC, Jiang H, Huisinga KL, Elgin SCR (2009) Multiple SET methyltransferases are required to maintain normal heterochromatin domains in the genome of Drosophila melanogaster. Genetics 181:1303–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cakouros D, Daish TJ, Kumar S (2004) Ecdysone receptor directly binds the promoter of the Drosophila caspase dronc, regulating its expression in specific tissues. J Cell Biol 165:631–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calpena E, Palau F, Espinós C, Galindo MI (2015) Evolutionary history of the Smyd gene family in metazoans: a framework to identify the orthologs of human Smyd genes in Drosophila and other animal species. PLoS ONE 10:e0134106

    Article  PubMed  PubMed Central  Google Scholar 

  • Clough E, Moon W, Wang S, Smith K, Hazelrigg T (2007) Histone methylation is required for oogenesis in Drosophila. Development 134:157–165

    Article  CAS  PubMed  Google Scholar 

  • Clough E, Tedeschi T, Hazelrigg T (2014) Epigenetic regulation of oogenesis and germ stem cell maintenance by the Drosophila histone methyltransferase Eggless/dSetDB1. Dev Biol 388:181–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V (2002) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111:185–196

    Article  CAS  PubMed  Google Scholar 

  • De Gregorio E, Spellman PT, Tzou P, Rubin GM, Lemaitre B (2002) The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J 21:2568–2579

    Article  PubMed  PubMed Central  Google Scholar 

  • Delaney CE, Methot SP, Kalck V, Seebacher J, Hess D, Gasser SM, Padeken J (2022) SETDB1-like MET-2 promotes transcriptional silencing and development independently of its H3K9me-associated catalytic activity. Nat Struct Mol Biol 29:85–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebert A, Schotta G, Lein S, Kubicek S, Krauss V, Jenuwein T, Reuter G (2004) Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev 18:2973–2983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eissenberg JC, Elgin SCR (2014) HP1a: a structural chromosomal protein regulating transcription. Trends Genet 30:103–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei Q, Shang K, Zhang J, Chuai S, Kong D, Zhou T, Fu S, Liang Y, Li C, Chen Z et al (2015b) Histone methyltransferase SETDB1 regulates liver cancer cell growth through methylation of p53. Nat Commun 6:8651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei Q, Yang X, Jiang H, Wang Q, Yu Y, Yu Y, Yi W, Zhou S, Chen T, Lu C et al (2015a) SETDB1 modulates PRC2 activity at developmental genes independently of H3K9 trimethylation in mouse ES cells. Genome Res 25:1325–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueiredo MLA, Philip P, Stenberg P, Larsson J (2012) HP1a recruitment to promoters is independent of H3K9 methylation in Drosophila melanogaster. PLoS Genet 8:e1003061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guittard E, Blais C, Maria A, Parvy J-P, Pasricha S, Lumb C, Lafont R, Daborn PJ, Dauphin-Villemant C (2011) CYP18A1, a key enzyme of Drosophila steroid hormone inactivation, is essential for metamorphosis. Dev Biol 349:35–45

    Article  CAS  PubMed  Google Scholar 

  • Hearn MG, Hedrick A, Grigliatti TA, Wakimoto BT (1991) The effect of modifiers of position-effect variegation on the variegation of heterochromatic genes of Drosophila melanogaster. Genetics 128:785–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong H-H, Yalamanchili HK, Guo C, Shulman JM, Liu Z (2018) An ultra-fast and scalable quantification pipeline for transposable elements from next generation sequencing data. Pac Symp Biocomput 23:168–179

    PubMed  Google Scholar 

  • Jiang C, Lamblin AF, Steller H, Thummel CS (2000) A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Mol Cell 5:445–455

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Loh Y-HE, Rajarajan P, Hirayama T, Liao W, Kassim BS, Javidfar B, Hartley BJ, Kleofas L, Park RB et al (2017) The methyltransferase SETDB1 regulates a large neuron-specific topological chromatin domain. Nat Genet 49:1239–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalashnikova DA, Maksimov DA, Romanov SE, Laktionov PP, Koryakov DE (2021) SetDB1 and Su(var)3-9 play non-overlapping roles in somatic cell chromosomes of Drosophila melanogaster. J Cell Sci 134:jcs253096

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Kato M, Tachibana M, Shinkai Y, Yamaguchi M (2008) Characterization of Drosophila G9a in vivo and identification of genetic interactants. Genes Cells 13:703–722

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koryakov DE, Walther M, Ebert A, Lein S, Zhimulev IF, Reuter G (2011) The SUUR protein is involved in binding of SU(VAR)3-9 and methylation of H3K9 and H3K27 in chromosomes of Drosophila melanogaster. Chromosome Res 19:235–249

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Kramer JM, Kochinke K, Oortveld MAW, Marks H, Kramer D, de Jong EK, Asztalos Z, Westwood JT, Stunnenberg HG, Sokolowski MB et al (2011) Epigenetic regulation of learning and memory by Drosophila EHMT/G9a. PLoS Biol 9:e1000569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanouette S, Mongeon V, Figeys D, Couture J-F (2014) The functional diversity of protein lysine methylation. Mol Syst Biol 10:724

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee K-S, Yoon J, Park JS, Kang Y-K (2010) Drosophila G9a is implicated in germ cell development. Insect Mol Biol 19:131–139

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

    Article  CAS  PubMed  Google Scholar 

  • Ligoxygakis P, Pelte N, Ji C, Leclerc V, Duvic B, Belvin M, Jiang H, Hoffmann JA, Reichhart J-M (2002) A serpin mutant links Toll activation to melanization in the host defence of Drosophila. EMBO J 21:6330–6337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Maksimov DA, Koryakov DE (2019) Binding of SU(VAR)3-9 partially depends on SETDB1 in the chromosomes of Drosophila melanogaster. Cells 8:1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maksimov DA, Laktionov PP, Posukh OV, Belyakin SN, Koryakov DE (2018) Genome-wide analysis of SU(VAR)3-9 distribution in chromosomes of Drosophila melanogaster. Chromosoma 127:85–102

    Article  CAS  PubMed  Google Scholar 

  • Marcel M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  • Mazina MY, Ziganshin RH, Magnitov MD, Golovnin AK, Vorobyeva NE (2020) Proximity-dependent biotin labelling reveals CP190 as an EcR/Usp molecular partner. Sci Rep 10:4793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merkling SH, Bronkhorst AW, Kramer JM, Overheul GJ, Schenck A, Van Rij RP (2015) The epigenetic regulator G9a mediates tolerance to RNA virus infection in Drosophila. PLoS Pathog 11:e1004692

    Article  PubMed  PubMed Central  Google Scholar 

  • Methot SP, Padeken J, Brancati G, Zeller P, Delaney CE, Gaidatzis D, Kohler H, van Oudenaarden A, Großhans H, Gasser SM (2021) H3K9me selectively blocks transcription factor activity and ensures differentiated tissue integrity. Nat Cell Biol 23:1163–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minakhina S, Steward R (2006) Melanotic mutants in Drosophila: pathways and phenotypes. Genetics 174:253–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mis J, Ner SS, Grigliatti TA (2006) Identification of three histone methyltransferases in Drosophila: dG9a is a suppressor of PEV and is required for gene silencing. Mol Genet Genomics 275:513–526

    Article  CAS  PubMed  Google Scholar 

  • Montavon T, Shukeir N, Erikson G, Engist B, Onishi-Seebacher M, Ryan D, Musa Y, Mittler G, Graff Meyer A, Genoud C, Jenuwein T (2021) Complete loss of H3K9 methylation dissolves mouse heterochromatin organization. Nat Commun 12:4359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, Miller EL, O’Connor MB, Kingston RE, Simon JA (2002) Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111:197–208

    Article  PubMed  Google Scholar 

  • Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292:110–113

    Article  CAS  PubMed  Google Scholar 

  • Nunes С, Sucena É, Koyama T (2021) Endocrine regulation of immunity in insects. FEBS J 288:3928–3947

    Article  CAS  PubMed  Google Scholar 

  • O’Carroll D, Scherthan H, Peters AHFM, Opravil S, Haynes AR, Laible G, Rea S, Schmid M, Lebersorger A, Jerratsch M et al (2000) Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol Cell Biol 20:9423–9433

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohhara Y, Kato Y, Kamiyama T, Yamakawa-Kobayashi K (2022) Su(var)2-10- and Su(var)205-dependent upregulation of the heterochromatic gene neverland is required for developmental transition in Drosophila. Genetics 222:iyac137

    Article  PubMed  PubMed Central  Google Scholar 

  • Ou Q, King-Jones K (2013) What goes up must come down: transcription factors have their say in making ecdysone pulses. Curr Top Dev Biol 103:35–71

    Article  CAS  PubMed  Google Scholar 

  • Paddibhatla I, Gautam DK, Mishra RK (2019) SETDB1 modulates the differentiation of both the crystal cells and the lamellocytes in Drosophila. Dev Biol 456:74–85

    Article  CAS  PubMed  Google Scholar 

  • Padeken J, Methot SP, Gasser SM (2022) Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol 23:623–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng JC, Karpen GH (2009) Heterochromatic genome stability requires regulators of histone H3 K9 methylation. PLoS Genet 5:e1000435

    Article  PubMed  PubMed Central  Google Scholar 

  • Pengelly AR, Copur Ö, Jäckle H, Herzig A, Müller J (2013) A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb. Science 339:698–699

    Article  CAS  PubMed  Google Scholar 

  • Penke TJR, McKay DJ, Strahl BD, Matera AG, Duronio RJ (2016) Direct interrogation of the role of H3K9 in metazoan heterochromatin function. Genes Dev 30:1866–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penke TJR, McKay DJ, Strahl BD, Matera AG, Duronio RJ (2018) Functional redundancy of variant and canonical histone H3 lysine 9 modification in Drosophila. Genetics 208:229–244

    Article  CAS  PubMed  Google Scholar 

  • Peters AHFM, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schöfer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A et al (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107:323–337

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro I, Margueron R, Shukeir N, Eisold M, Fritzsch C, Richter FM, Mittler G, Genoud C, Goyama S, Kurokawa M et al (2012) Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell 150:948–960

    Article  CAS  PubMed  Google Scholar 

  • Pongor LS, Gross JM, Alvarez RV, Murai J, Jang S-M, Zhang H, Redon C, Fu H, Huang S-Y, Thakur B et al (2020) BAMscale: quantification of next-generation sequencing peaks and generation of scaled coverage tracks. Epigenetics Chromatin 13:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rewitz KF, Yamanaka N, O’Connor MB (2010) Steroid hormone inactivation is required during the juvenile-adult transition in Drosophila. Dev Cell 19:895–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riahi H, Fenckova M, Goruk KJ, Schenck A, Kramer JM (2021) The epigenetic regulator G9a attenuates stress-induced resistance and metabolic transcriptional programs across different stressors and species. BMC Biol 19:112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rus F, Flatt T, Tong M, Aggarwal K, Okuda K, Kleino A, Yates E, Tatar M, Silverman N (2013) Ecdysone triggered PGRP-LC expression controls Drosophila innate immunity. EMBO J 32:1626–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sankar A, Mohammad F, Sundaramurthy AK, Wang H, Lerdrup M, Tatar T, Helin K (2022) Histone editing elucidates the functional roles of H3K27 methylation and acetylation in mammals. Nat Genet 54:754–760

    Article  CAS  PubMed  Google Scholar 

  • Schmidt RL, Trejo TR, Plummer TB, Platt JL, Tang AH (2008) Infection-induced proteolysis of PGRP-LC controls the IMD activation and melanization cascades in Drosophila. FASEB J 22:918–929

    Article  CAS  PubMed  Google Scholar 

  • Schotta G, Ebert A, Krauss V, Fischer A, Hoffmann J, Rea S, Jenuwein T, Dorn R, Reuter G (2002) Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 21:1121–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seum C, Bontron S, Reo E, Delattre M, Spierer P (2007b) Drosophila G9a is a nonessential gene. Genetics 177:1955–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seum C, Reo E, Peng H, Rauscher FJ III, Spierer P, Bontron S (2007a) Drosophila SETDB1 is required for chromosome 4 silencing. PLoS Genet 3:e76

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimaji K, Konishi T, Tanaka S, Yoshida H, Kato Y, Ohkawa Y, Sato T, Suyama M, Kimura H, Yamaguchi M (2015) Genomewide identification of target genes of histone methyltransferase dG9a during Drosophila embryogenesis. Genes Cells 20:902–914

    Article  CAS  PubMed  Google Scholar 

  • Sienski G, Batki J, Senti K-A, Dönertas D, Tirian L, Meixner K, Brennecke J (2015) Silencio/CG9754 connects the piwi-piRNA complex to the cellular heterochromatin machinery. Genes Dev 29:2258–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stabell M, Bjørkmo M, Aalen RB, Lambertsson A (2006b) The Drosophila SET domain encoding gene dEset is essential for proper development. Hereditas 143:177–188

    Article  PubMed  Google Scholar 

  • Stabell M, Eskeland R, Bjørkmo M, Larsson J, Aalen RB, Imhof A, Lambertsson A (2006a) The Drosophila G9a gene encodes a multi-catalytic histone methyltransferase required for normal development. Nucleic Acids Res 34:4609–4621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens M (2017) False discovery rates: a new deal. Biostatistics 18:275–294

    PubMed  Google Scholar 

  • Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H et al (2002) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16:1779–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takehana A, Katsuyama T, Yano T, Oshima Y, Takada H, Aigaki T, Kurata S (2002) Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc Natl Acad Sci USA 99:13705–13710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Towbin BD, González-Aguilera C, Sack R, Gaidatzis D, Kalck V, Meister P, Askjaer P, Gasser SM (2012) Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150:934–947

    Article  CAS  PubMed  Google Scholar 

  • Tschiersch B, Hofmann A, Krauss V, Dorn R, Korge G, Reuter G (1994) The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J 13:3822–3831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsurumi A, Dutta P, Shang R, Yan S-J, Li WX (2013) Drosophila Kdm4 demethylases in histone H3 lysine 9 demethylation and ecdysteroid signaling. Sci Rep 3:2894

    Article  PubMed  PubMed Central  Google Scholar 

  • Tzeng T-Y, Lee C-H, Chan L-W, Shen C-KJ (2007) Epigenetic regulation of the Drosophila chromosome 4 by the histone H3K9 methyltransferase dSETDB1. Proc Natl Acad Sci USA 104:12691–12696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A et al (2015) Tissue-based map of the human proteome. Science 347:1260419

    Article  PubMed  Google Scholar 

  • Ushijima Y, Inoue YH, Konishi T, Kitazawa D, Yoshida H, Shimaji K, Kimura H, Yamaguchi M (2012) Roles of histone H3K9 methyltransferases during Drosophila spermatogenesis. Chromosome Res 20:319–331

    Article  CAS  PubMed  Google Scholar 

  • Uyehara CM, Leatham-Jensena M, McKay DJ (2022) Opportunistic binding of EcR to open chromatin drives tissue-specific developmental responses. Proc Natl Acad Sci USA 119:e2208935119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uyehara CM, McKay DJ (2019) Direct and widespread role for the nuclear receptor EcR in mediating the response to ecdysone in Drosophila. Proc Natl Acad Sci USA 116:9893–9902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakimoto BT, Hearn MG (1990) The effects of chromosome rearrangements on the expression of heterochromatic genes in chromosome 2L of D. melanogaster. Genetics 125:141–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warrier T, El Farran C, Zeng Y, Ho BSQ, Bao Q, Zheng ZH, Bi X, Ng HH, Ong DST, Chu JJH et al (2022) SETDB1 acts as a topological accessory to Cohesin via an H3K9me3-independent, genomic shunt for regulating cell fates. Nucleic Acids Res 50:7326–7349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson KL, Johnson TK, Denell RE (1991) Lethal(1) aberrant immune response mutations leading to melanotic tumor formation in Drosophila melanogaster. Dev Genet 12:173–187

    Article  CAS  PubMed  Google Scholar 

  • Wood AM, Van Bortle K, Ramos E, Takenaka N, Rohrbaugh M, Jones BC, Jones KC, Corces VG (2011) Regulation of chromatin organization and inducible gene expression by a Drosophila insulator. Mol Cell 44:29–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L et al (2021) clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (NY) 2:100141

  • Xu L, Jiang H (2020) Writing and reading histone H3 lysine 9 methylation in Arabidopsis. Front Plant Sci 11:452

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon J, Lee K-S, Park JS, Yu K, Paik S-G, Kang Y-K (2008) dSETDB1 and SU(VAR)3-9 sequentially function during germline-stem cell differentiation in Drosophila melanogaster. PLoS ONE 3:e2234

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Chang S-Y, Yin S-G, Liu Z-Y, Cheng X, Liu X-J, Jiang Q, Gao G, Lin D-Y, Kang X-L et al (2020) Two conserved epigenetic regulators prevent healthy ageing. Nature 579:118–122

    Article  CAS  PubMed  Google Scholar 

  • Zakharova VV, Magnitov MD, Del Maestro L, Ulianov SV, Glentis A, Uyanik B, Williart A, Karpukhina A, Demidov O, Joliot V et al (2022) SETDB1 fuels the lung cancer phenotype by modulating epigenome, 3D genome organization and chromatin mechanical properties. Nucleic Acids Res 50:4389–4413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeller P, Padeken J, van Schendel R, Kalck V, Tijsterman M, Gasser SM (2016) Histone H3K9 methylation is dispensable for Caenorhabditis elegans development but suppresses RNA:DNA hybrid-associated repeat instability. Nat Genet 48:1385–1395

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wen H, Shi X (2012) Lysine methylation: beyond histones. Acta Biochim Biophys Sin (Shanghai) 44:14–27

    Article  PubMed  Google Scholar 

  • Zhang Z, Palli SR (2009) Identification of a cis-regulatory element required for 20-hydroxyecdysone enhancement of antimicrobial peptide gene expression in Drosophila melanogaster. Insect Mol Biol 18:595–605

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by a grant from the Russian Science Foundation #23-24-00114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry E. Koryakov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Barbara Mellone

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanov, S.E., Shloma, V.V., Maksimov, D.A. et al. SetDB1 and Su(var)3-9 are essential for late stages of larval development of Drosophila melanogaster. Chromosome Res 31, 35 (2023). https://doi.org/10.1007/s10577-023-09743-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10577-023-09743-7

Keywords

Navigation