Skip to main content
Log in

Phylogenetic diversity of culturable bacteria in surface seawater from the Drake Passage, Antarctica

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The Drake Passage is located between the Antarctic Peninsula and Tierra del Fuego in the south of South America. Surface seawater samples were collected at seven sites in the Drake Passage during the austral summer of 2012. The 16S rRNA sequences were analyzed from 187 isolated bacterial strains. Three phyla, 29 genera and 56 species were identified. The three phyla were Actinobacteria, Firmicutes and Proteobacteria; the Proteobacteria included α-Proteobacteria, β-Proteobacteria and γ-Proteobacteria. γ-Proteobacteria, Actinobacteria and Firmicutes were the dominant class or phyla in terms of quantity and species. Gram-positive bacteria (Actinobacteria and Firmicutes) accounted for 57.8% of all types identified. There were nine dominant genera, including Curtobacterium, Staphylococcus, and Halomonas, and 14 dominant species including Curtobacterium flaccumfaciens, Curtobacterium pusillum, and Staphylococcus sciuri. Of the strains identified, 87.2% were catalase positive or weakly positive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abele D, Burlando B, Viarengo A, Pörtner H O. 1998. Exposure to elevated temperatures and hydrogen peroxide elicits oxidative stress and antioxidant response in the Antarctic intertidal limpet Nacella concinna. Comparative Biochemistry and Physiology, 120(2): 425–435.

    Article  Google Scholar 

  • Abele D, Ferreyra G A, Schloss I. 1999. H2O2 accumulation from photochemical production and atmospheric wet deposition in Antarctic coastal and off-shore waters of Potter Cove, King George Island, South Shetland Islands. Antarctic Science, 11(2): 131–139.

    Article  Google Scholar 

  • Abele-Oeschger D, Sartoris F J, Pörtner H O. 1996. Effect of elevated hydrogen peroxide levels on aerobic metabolic rate, lactate formation, ATP homeostasis and intracellular pH in the sand shrimp Crangon crangon. Comparative Biochemistry and Physiology, 117C: 123–129.

    Google Scholar 

  • Antony R, Krishnan K P, Laluraj C M, Thamban M, Dhakephalkar P K, Engineer A S, Shivaji S. 2012. Diversity and physiology of culturable bacteria associated with a coastal Antarctic ice core. Microbiological Research, 167(6): 372–380.

    Article  Google Scholar 

  • Bano N, Hollibaugh J T. 2002. Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Applied and Environmental Microbiology, 68(2): 505–518.

    Article  Google Scholar 

  • Boraso A, Williams A J. 1994. Modification of the gating of the cardiac sarcoplasmic reticulum Ca2+ -release channel by H2O2 and dithiothreitol. American Physiological Society, 267(3Pt2): H1010–H1016.

    Google Scholar 

  • Bowman J P, Rea S M, McCammon S A, McMeekin T A. 2000. Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hilds, Eastern Antarctica. Environmental Microbiology, 2(2): 227–237.

    Article  Google Scholar 

  • Brinkmeyer R, Knittel K, Jürgens J, Weyland H, Amann R, Helmke E. 2003. Diversity and structure of bacterial communities in arctic versus antarctic pack ice. Applied and Environmental Microbiology, 69(11): 6610–6619.

    Article  Google Scholar 

  • Britschgi T B, Giovannoni S J. 1991. Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Applied and Environmental Microbiology, 57(6): 1707–1713.

    Google Scholar 

  • Brown M V, Bowman J P. 2001. A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiology Ecology, 35(3): 267–275.

    Article  Google Scholar 

  • Cooper W J, Zika R G. 1983. Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. Science, 220(4598): 711–712.

    Article  Google Scholar 

  • De Souza M J, Nair S, Bharathi P A L, Chandramohan D. 2006. Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic Marine waters. Ecotoxicology, 15(4): 379–384.

    Article  Google Scholar 

  • Fuhrman J A, McCallum K, Davis A A. 1993. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific oceans. Applied and Environmental Microbiology, 59(5): 1294–1302.

    Google Scholar 

  • Ghiglione J F, Galand P E, Pommier T, Pedrós-Alió C, Maas E W, Bakker K, Bertilson S, Kirchman D L, Lovejoy C, Yager P L, Murray A E. 2012. Pole-to-pole biogeography of surface and deep marine bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 109(43): 17633–17638.

    Article  Google Scholar 

  • Glöckner F O, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, Amann R. 2000. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Applied and Environmental Microbiology, 66(11): 5053–5065.

    Article  Google Scholar 

  • Groudieva T, Kambourova M, Yusef H, Royter M, Grote R, Trinks H, Antranikian G. 2004. Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles, 8(6): 475–488.

    Article  Google Scholar 

  • Gupta P, Agrawal H K, Bandopadhyay R. 2015. Distribution pattern of bacteria in the two geographic poles and Southern Ocean from the reported 16S rDNA sequences. Current Science, 108(10): 1926–1930.

    Google Scholar 

  • Hitschke K, Bühler R, Apell H J, Stark G. 1994. Inactivation of the Na, K-ATPase by radiation-induced free radicals Evidence for a radical-chain mechanism. FEBS Letters, 353(3): 297–300.

    Article  Google Scholar 

  • Hollibaugh J T, Bano N, Ducklow H W. 2002. Widespread distribution in polar oceans of 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria. Applied and Environmental Microbiology, 68(3): 1478–1484.

    Article  Google Scholar 

  • Johnson S S, Hebsgaard M B, Christensen T R, Mastepanov M, Nielsen R, Munch K, Brand T, Gilbert M T P, Zuber M T, Bunce M, Rønn R, Gilichinsky D, Froese D, Willerslev E. 2007. Ancient bacteria show evidence of DNA repair. Proceedings of the National Academy of Sciences of the United States of America, 104(36): 14401–14405.

    Article  Google Scholar 

  • Jones D P. 1985. The role of oxygen concentration in oxidative stress: hypoxic and hyperoxic models. In: Sifs H eds. Oxidative Stress. Academic Press, London. p.151–195.

    Chapter  Google Scholar 

  • Karl D M, Resing J, Tien G, Letelier R. 1993. Palmer LTER: Hydrogen peroxide in the Palmer LTER region: I. An introduction. Antarctic Journal of the United States, 28(5): 225–226.

    Google Scholar 

  • Kim O S, Cho Y J, Lee K, Yoon S H, Kim M, Na H, Park S C, Jeon Y S, Lee J H, Yi H, Won S, Chun J. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology, 62(3): 716–721.

    Article  Google Scholar 

  • Legendre L, Ackley S F, Dieckmann G S, Gulliksen B, Horner R, Hoshiai T, Melnikov I A, Reeburgh W S, Spindler M, Sullivan C W. 1992. Ecology of sea ice biota. Polar Biology, 12(3): 429–444.

    Google Scholar 

  • Liu Z L, Ning X R, Cai Y M, Liu C G, Zhu G H. 2000. Primary productivity and chlorophyll a in the surface water on the route encircling the Antarctica during austral summer of 1999-2000. Chinese Journal of Polar Research, 12(4): 235–244. (in Chinese with English abstract)

    Google Scholar 

  • Liu Z L, Ning X R, Zhu G H, Shi J X. 1993. Size-fractionated biomass and productivity of phytoplankton and particulate organic carbon in the surface on the routine encircling the Antarctica. Antarctic Research (Chinese Edition), 5(4): 63–72. (in Chinese with English abstract)

    Google Scholar 

  • Mense M, Stark G, Apell H J. 1997. Effects of free radicals on partial reactions of the Na, K-ATPase. Journa1 of Membrane Biology, 156(1): 63–71.

    Article  Google Scholar 

  • Moffett J W, Zajiriou O C. 1990. An investigation of hydrogen peroxide chemistry in surface waters of Vineyard Sound with H2 18O2 and 18O2. Limnology and Oceanography, 35(6): 1221–1229.

    Article  Google Scholar 

  • Mullins T D, Britschgi T B, Krest R L, Giovannoni S J. 1995. Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnology and Oceanography, 40(1): 148–158.

    Article  Google Scholar 

  • Neužil J, Gebicki J M, Stocker R. 1993. Radical-induced chain oxidation of proteins and its inhibition by chain-breaking antioxidants. Biochemical Journal, 293(3): 601–606.

    Article  Google Scholar 

  • Oliveros J C. 2007. VENNY. An interactive tool for comparing lists with Venn Diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html.

    Google Scholar 

  • Prabagaran S R, Manorama R, Delille D, Shivaji S. 2007. Predominance of Roseobacter, Sulfitobacter, Glaciecola and Psychrobacter in seawater collected offUshuaia, Argentina, Sub-Antarctica. FEMS Microbiology Ecology, 59(2): 342–355.

    Article  Google Scholar 

  • Ravenschlag K, Sahm K, Amann R. 2001. Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard). Applied and Environmental Microbiology, 67(1): 387–395.

    Article  Google Scholar 

  • Riemann L, Leitet C, Pommier T, Simu K, Holmfeldt K, Larsson U, Hagström Å. 2008. The native bacterioplankton community in the central Baltic Sea is infuenced by freshwater bacterial species. Applied and Environmental Microbiology, 74(2): 503–515.

    Article  Google Scholar 

  • Schulte-Frohlinde D, Sonntag C V. 1985. Radiolysis of DNA and model systems in the presence of oxygen. In: Sies H eds. Oxidative Stress. Academic Press, London. p.11–40.

    Chapter  Google Scholar 

  • Seiburth J M. 1979. Sea Microbial Seascapes. University Park Press, Baltimore, America.

    Google Scholar 

  • Sievert S M, Brinkhoff T, Muyzer G, Ziebis W, Kuever J. 1999. Spatial heterogeneity of bacterial populations along an environmental gradient at a shallow submarine hydrothermal vent near milos island (Greece). Applied and Environmental Microbiology, 65(9): 3834–3842.

    Google Scholar 

  • Stark G. 1991. The effect of ionizing radiation on lipid membranes. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes, 1071(2): 103–122.

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8): 1596–1599.

    Article  Google Scholar 

  • Thomas C E, Reed D J. 1990. Radical-induced inactivation of kidney Na+, K+, -ATPase: sensitivity to membrane lipid peroxidation and the protective effect of vitamin E. Archives of Biochemistry and Biophysics, 281(1): 96–105.

    Article  Google Scholar 

  • Tindall B J, Sikorski J, Smibert R A, Krieg N R. 2007. Phenotypic characterization and the principles of comparative systematics. In: Reddy C A, Beveridge T J, Breznak J A, Marzluf G, Schmidt T M, Snyder L R eds. Methods for General and Molecular Microbiology. 3 rd edn. ASM Press, Washington DC. p.330–393.

    Google Scholar 

  • Viarengo A, Abele-Oeschgder D, Burlando B. 1998. Effects of low temperature on prooxidants processes and antioxidant defence systems in marine organisms. In: Pörtener H O, Playle R C eds. Cold Ocean Physiology. Cambridge University Press, Cambridge. p.213–235.

    Google Scholar 

  • Ward A C, Bora N. 2006. Diversity and biogeography of marine actinobacteria. Current Opinion in Microbiology, 9(3): 279–286.

    Article  Google Scholar 

  • Webster N C, Wilson K J, Blackall L L, Hill R T. 2001. Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Applied and Environmental Microbiology, 67(1): 434–444.

    Article  Google Scholar 

  • Weisburg W G, Barns S M, Pelletier D A, Lane D J. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2): 697–703.

    Google Scholar 

  • Xu H S, Roberts N, Singleton F L, Attwell R W, Grimes D J, Colwell R R. 1982. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microbial Ecology, 8(3): 313–323.

    Article  Google Scholar 

  • Yu Y, Li H R, Chen B, Zeng Y X, He J F, Cai M H. 2006. Phylogenetic diversity and cold-adaptive hydrolytic enzymes of culturable psychrophilic bacteria associated with sea ice from high latitude ocean, Arctic. Acta Microbiologica Sinica, 46(2): 184–190. (in Chinese with English abstract)

    Google Scholar 

  • Zdanowski M K, Żmuda-Baranowska M J, Borsuk P, Swiatecki A, Górniak D, Wolicka D, Jankowska K M, Grzesiak J. 2013. Culturable bacteria community development in postglacial soils of Ecology Glacier, King George Island, Antarctica. Polar Biology, 36(4): 511–527.

    Article  Google Scholar 

  • Zeng Y X, Yu Y, Qiao Z Y, Jin H Y, Li H R. 2014. Diversity of bacterioplankton in coastal seawaters of Fildes Peninsula, King George Island, Antarctica. Archives of Microbiology, 196(2): 137–147.

    Article  Google Scholar 

  • Zeng Y X, Zheng T L, Li H R. 2009. Community composition of the marine bacterioplankton in Kongsfjorden (Spitsbergen) as revealed by 16S rRNA gene analysis. Polar Biology, 32(10): 1447–1460.

    Article  Google Scholar 

  • Zeng Y X, Zou Y, Grebmeier J M, He J F, Zheng T L. 2012. Culture-independent and-dependent methods to investigate the diversity of planktonic bacteria in the northern Bering Sea. Polar Biology, 35(1): 117–129.

    Article  Google Scholar 

  • Zhang X H. 2007. Marine Microbiology. China Ocean University Press, Qingdao, China. (in Chinese)

    Google Scholar 

  • Zwart G, Hiorns W D, Methé B A, van Agterveld M P, Huismans R, Nold S C, Zehr J P, Lannbroek H J. 1998. Nearly identical 16S rRNA sequences recovered from lakes in North America and Europe indicate the existence of clades of globally distributed freshwater bacteria. Systematic and Applied Microbiology, 21(4): 546–556.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Sun  (孙谧).

Additional information

Supported by the Natural Science Foundation of China-United Fund (No. U1406402-5), the Postdoctoral Researcher Applied Research Project Funding of Qingdao, China (No. Q51201407), and the International Cooperation and Exchanges in Science and Technology (No. 2014DFG30890)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xing, M., Wang, W. et al. Phylogenetic diversity of culturable bacteria in surface seawater from the Drake Passage, Antarctica. Chin. J. Ocean. Limnol. 34, 952–963 (2016). https://doi.org/10.1007/s00343-016-5132-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-016-5132-z

Keywords

Navigation