Skip to main content
Log in

Nitrogen budget in the Changjiang River drainage area

  • Chemistry
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

We established a budget model of nitrogen (N) inputs and outputs between watersheds and waterbodies to determine the sources of riverine N in the Changjiang (Yangtze) River drainage area. Nitrogen inputs in the budget included N from synthetic fertilizer, biological fixation by leguminous and other crops, wet/dry atmospheric deposition, excreta from humans and animals, and crop residues. The total N input was estimated to be 17.6 Tg, of which 20% or 3.5 Tg N was transported into waterbodies. Of the total N transported into waterbodies, the largest proportion was N from animal waste (26%), followed by N from atmospheric wet/dry deposition (25%), synthetic fertilizer N (17%), N in sewage wastes (17%), N in human waste from rural areas (6%) and industrial wastewater N (9%). We studied the spatial patterns of N inputs and outputs by dividing the Changjiang River drainage area into four sub-basins, from upstream to downstream: the Tongtian River drainage area (TTD, the headwater drainage area, 138 000 km2, less disturbed by human activities); the Jinsha River drainage area (JSD, 347 000 km2, less disturbed by human activities, approx. 3 500 km upstream of the Changjiang estuary); the Pingshan-Yichang drainage area (PYD, 520 500 km2, large-scale human disturbance, about 2 000 km upstream of the Changjiang estuary); and the Yichang-Datong drainage area (YDD, 699 900 km2, large-scale human disturbance, approx. 620 km upstream of the Changjiang estuary). The average N input into waterbodies was 2.3, 7.3, 24.1, and 28.2 kg N/ha in the TTD, JSD, PYD, and YDD sub-basins, respectively, suggesting an increase of N-components of more than 10 times from upstream to downstream areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aber J D, Magill A, Boone S, Nadelhoffer KJ, Downs M, Hallett R. 1995. Forest biogeochemistry and primary production altered by nitrogen saturation. Water Air Soil Pollut., 85: 1 665–1 670.

    Article  Google Scholar 

  • Bao X, Watanabe M, Wang Q X, Hayashi S, Liu J Y. 2006. Nitrogen budgets of agricultural fields of the Changjiang River basin from 1980 to 1990. Sci. Total Environ., 363: 136–148.

    Article  Google Scholar 

  • Boyer E W, Goodale C L, Jaworski N A, Howarth R W. 2002. Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA. Biogeochemistry, 57/58: 137–169.

    Article  Google Scholar 

  • Burns R C, Hardy R W F. 1975. Nitrogen Fixation in Bacteria and Higher Plants. Springer-Verlag, New York. 129p.

    Book  Google Scholar 

  • China State Statistical Bureau. 2007. China Statistical Yearbook. China Statistical Publishing House, China. p.1–320. (in Chinese)

    Google Scholar 

  • Cleveland C C, Townsend A R, Schimel D S, Fisher H, Howarth R W, Hedin L O, Perakis S S, Latty E F, Fisher J C V, Elseroad A, Wasson M F. 1999. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem. Cycles, 13(2): 623–645.

    Article  Google Scholar 

  • Dou M, Xie P, Xia J, Shen X L, Fang F. 2002. Study on algal bloom in Hanjiang River. Adv. Water Sci., 13(5): 557–561. (in Chinese with English abstract)

    Google Scholar 

  • Duan S W, Zhang S, Huang H. 2000. Transport of dissolved inorganic from the major rivers to the estuaries in China. Nutr. Cycl. Agroecosyst., 57: 13–22.

    Article  Google Scholar 

  • Environmental monitoring of China. 2004. Monitoring Report on Ecology and Environment of the Three Georges Project. (in Chinese)

  • Fisher D C, Oppenhelmer M. 1991. Atmospheric nitrogen deposition and the Chesapeake Bay estuary. Ambio, 20: 102–108.

    Google Scholar 

  • Galloway J N, Dentener F J, Capone D G, Boyer E W, Howarth R W, Seitzinger S P, Asner G P, Cleveland C C, Green P A, Holland E A, Karl D M, Michaels A F, Porter J H, Townsend A R, Vöosmarty C J. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry, 70: 153–226.

    Article  Google Scholar 

  • Giles J. 2005. Nitrogen study fertilizes fears of pollution. Nature, 433: 791.

    Article  Google Scholar 

  • Grasshoff K. 1976. Methods of Seawater Analysis. Verlag Chemie, New York. 276p.

    Google Scholar 

  • Gundersen P. 1995. Nitrogen deposition and leaching in European forests—Preliminary results from a data compilation. Water Air Soil Pollut., 85: 1 179–1 184.

    Article  Google Scholar 

  • Guo H C, Sun Y F. 2002. Characteristic analysis and control strategies for the eutrophicated problem of the Lake Dianchi. Prog. Geogr., 21(5): 500–506. (in Chinese with English abstract)

    Google Scholar 

  • Hinga K R, Keller A A, Ovjatt C A. 1991. Atmospheric deposition and nitrogen inputs to coastal waters. Ambio, 20: 256–260.

    Google Scholar 

  • IPCC. 1996. International Panel on Climate Change Guidelines for National Greenhouse Gas Inventories, Chapter 4, Agriculture: Nitrous oxide from agricultural soil and manure management. OECD, Paris.

    Google Scholar 

  • Jiang T, Yu Z M, Song X X, Cao X H, Yuan Y Q. 2010. Longterm ecological interaction between nutrients concentration and structure, and phytoplankton community in the Changjiang estuary. Chin. J. Oceanol. Limnol., 28(4): 887–898.

    Article  Google Scholar 

  • Jin L, Shao M, Zeng L M, Zhao D W, Tang D G. 2006. Investigation on the throughfall method to estimate the dry atmospheric deposition of the main inorganic materials. Chin. Sci. Bull., 51(11): 1 333–1 337.

    Google Scholar 

  • Kaste Ø, Henriksen A, Hindar A. 1997. Retention of atmospherically-derived nitrogen in subcatchments of the Bjerkreim river in southwestern Norway. Ambio, 26: 296–303.

    Google Scholar 

  • Li M T, Xu K Q, Watanabe M, Chen Z Y. 2007. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuar. Coast. Shelf Sci., 71: 3–12.

    Article  Google Scholar 

  • Linthurst R. 1988. Testimony before the United States Senate, Committee on Commerce, Science, and Transportation, June 8.

  • Liu C, Wang Q X, Watanabe M. 2006. Nitrogen transported to three Gorges Dam from agro-ecosystems during 1980–2000. Biogeochemistry, 81: 291–312.

    Article  Google Scholar 

  • Liu C, Watanabe M, Wang Q X. 2008. Changes in nitrogen budgets and nitrogen use efficiency in the agroecosystems of the Changjiang River basin between 1980 and 2000. Nutr. Cycl. Agroecosyst., 80: 19–37.

    Article  Google Scholar 

  • Lovett G M, Lindberg S E. 1993. Atmospheric deposition and canopy interactions of nitrogen in forests. Can. J. Forest Res., 23: 1 603–1 616.

    Article  Google Scholar 

  • Liu S M, Zhang J, Chen H T. 2003. Nutrients in the Changjiang and its tributaries. Biogeochemistry, 62: 1–18.

    Article  Google Scholar 

  • Liu X L, Xu J X, Wang F H, Zhang F S, Ma W Q. 2005. The resource and distribution of nitrogen nutrient in animal excretion in China. J. Agric. Univ. Hebei, 28(5): 27–32. (in Chinese with English abstract)

    Google Scholar 

  • Lu M, Liu M, Huang M W, Mao G F. 2006. Field study of nitrogen loss in soil with rice-wheat rotation system. J. Agro-Environ. Sci., 25(5): 1 234–1 239. (in Chinese)

    Google Scholar 

  • Ma L S, Wang Z Q, Zhang S M, Zhang S M, Zhang G Y. 1997. Pollution from agricultural non-point sources and its control in river system of Taihu Lake, Jiangsu. Acta Sci. Circumst., 17: 39–47. (in Chinese with English abstract)

    Google Scholar 

  • Nadelhoffer K J, Downs M R, Fry B, Aber J D, Magill A, Mallilo J M. 1995. The fate of 15-N labelled nitrate additions to a northern hardwood forest in east Maine. Oecologia, 41: 199–219.

    Google Scholar 

  • Nixon S W. 1995. Coastal eutrophication: a definition, social cause and future concerns. Ophelia, 41: 199–220.

    Google Scholar 

  • Oenema O, Tamminga S. 2005. Nitrogen in global animal production and management options for improving nitrogen use efficiency. Sci. China (Ser. B), 48: 871–887.

    Google Scholar 

  • Robbins J W D, Howells D H, Kriz G J. 1972. Stream pollution from animal production units. Res. J. Water Pollut. Control F., 44: 1 536–1 544.

    Google Scholar 

  • Shang G P, Shang J C. 2005. Causes and control countermeasures of eutrophication in Chaohu Lake, China. Chin. Geogr. Sci., 15(4): 348–354.

    Article  Google Scholar 

  • Sheeder S A, Lynch J A, Grimm J. 2002. Modeling atmospheric nitrogen deposition and transport in the Chesapeake Bay watershed. J. Environ. Qual., 31: 1 194–1 206.

    Article  Google Scholar 

  • Shen Z L. 2003. Is precipitation the dominant controlling factor of high inorganic nitrogen content in the Changjiang River and its mouth? Chin. J. Oceanol. Limnol., 21(4): 368–376.

    Article  Google Scholar 

  • Shen Z L, Liu Q, Zhang S M, Miao H, Zhang P. 2003. A nitrogen budget of the Changjiang River catchment. Ambio, 32: 65–69.

    Google Scholar 

  • Smil V. 1999. Nitrogen in crop production: an account of global flows. Global Biogeochem. Cycles, 13: 647–662.

    Article  Google Scholar 

  • Sirois A, Vet R J. 1988. Detailed analysis of sulfate and nitrate atmospheric deposition estimates at the Turkey Lakes Watershed. Can. J. Fisheries Aquat. Sci., 45(Supplement, No. 1): 14–15.

    Article  Google Scholar 

  • Statistical Bureau of Qinghai. 2007. Statistical Yearbook of Qinghai. China Statistical Publishing House, Beijing. (in Chinese)

    Google Scholar 

  • Statistical Bureau of Sichuan. 2007. Statistical Yearbook of Sichuan. China Statistical Publishing House, Beijing. (in Chinese)

    Google Scholar 

  • Statistical Bureau of Tibet. 2007. Statistical Yearbook of Tibet. China Statistical Publishing House, Beijing. (in Chinese)

    Google Scholar 

  • Tian Y H, Yin B, Yang L Z, Yin S X, Zhu Z L. 2007. Nitrogen runoff and leaching losses during rice-wheat rotations in Taihu Lake region, China. Pedosphere, 17(4): 445–456.

    Article  Google Scholar 

  • Vet R J, Sirois A, Jeffries D S, Semkin R G, Foster N W, Hazlett P, Chan C H. 1988. Comparison of bulk, wet-only, and wet-plus-dry deposition measurements at the Tuikey Lakes Watershed. Can. J. Fisheries Aquat. Sci., 45 (Supplement, No. 1): 26–37.

    Article  Google Scholar 

  • Wang B D. 2006. Cultural eutrophication in the Changjiang (Yangtze River) plume: history and perspective. Estuar. Coast. Shelf Sci., 69: 471–477.

    Article  Google Scholar 

  • Wang T J, Zhang Y, Yang H M. 2006. Estimation of atmospheric sulfur and nitrogen deposition over east China using subgrid simulation scheme. Plateau Meteorol., 25(5): 870–876. (in Chinese)

    Google Scholar 

  • Wang J Y, Wang S J, Chen Y, Zheng J C, Li C Y, Ji X J. 1996. Study on the nitrogen leaching in rice fields. Acta Pedologica Sinica, 33(1): 28–36. (in Chinese with English abstract)

    Google Scholar 

  • Watanabe I. 1986. Nitrogen fixation by non-legumes in tropical agriculture with special reference to wetland rice. Plant Soil, 90: 343–357.

    Article  Google Scholar 

  • Weller D E, Peterjohn W T, Goff N M, Correll D L. 1986. Ion and acid budgets for a forested Atlantic coastal plain watershed and their implications for the impacts of acid deposition. In: Correll D L ed. Watershed Research Perspectives. Smithsonian Inst. Press, USA. p.392

    Google Scholar 

  • Xiang R J, Chai L Y, Zhang G, Zhang X L, Zeng M. 2006. Input-output dynamics of nitrogen and sulfur in Caijiatang forested catchment in Hunan Province. Acta Sci. Circumst., 26(8): 1 372–1 378. (in Chinese with English abstract)

    Google Scholar 

  • Xie Y X, Xiong Z Q, Xing G X, Sun G Q, Zhu Z L. 2007. Assessment of nitrogen pollutant sources in surface waters of Taihu Lake region. Pedosphere, 17(2): 200–208.

    Article  Google Scholar 

  • Xing G X, Cao Y C, Shi S L, Sun G Q, Du L J, Zhu J G. 2001. N pollution sources and denitrification in waterbodies in Taihu Lake region. Sci. China (Ser. B), 44: 304–314.

    Article  Google Scholar 

  • Xing G X, Cao Y C, Shi S L, Sun G Q, Du L J, Zhu J G. 2002. Denitrification in underground saturated soil in a rice paddy region. Soil Biol. Biochem., 34(11): 1 593–1 598.

    Article  Google Scholar 

  • Xiong Z Q, Xing G X, Shen G Y Sun D L. 2002. Non-point source N pollution of lakes, rivers and wells in the Taihu Lake region. Rural Eco-Environ., 18(3): 29–33.

    Google Scholar 

  • Xing G X, Yan X. 1999. Direct nitrous emissions from agricultural fields in China estimated by the revised 1996 IPCC guidelines for national greenhouse gases. Environ. Sci. Policy, 2: 355–361.

    Article  Google Scholar 

  • Xing G X, Zhu Z L. 2000. An assessment of N loss from agricultural fields to the environment in China. Nutr. Cycl. Agroecosyst., 57: 67–73.

    Article  Google Scholar 

  • Xing G X, Zhu Z L. 2002. Regional nitrogen budget for China and its major watersheds. Biogeochemistry, 57/58: 405–427.

    Article  Google Scholar 

  • Yan W J, Zhang S. 2003. How do nitrogen inputs to the Changjiang basin impact the Changjiang river nitrate: a temporal analysis for 1968–1997. Global Biogeochem. Cycle s, 17: 1–9.

    Google Scholar 

  • Zhang G S. 2004. Atmospheric Dry an Wet Deposition and Impact on the Marine Ecosystem of Yellow Sea and East China Sea. Master dissertation, Ocean University of China. (in Chinese)

  • Zhang S, Li C M, Wang Y D, Zhang Y, Zhao L M, Zheng J. 2003. Water pollution investigation of Wujiang. Environ. Mon. China, 19(1): 23–26. (in Chinese with English abstract)

    Article  Google Scholar 

  • Zhang Y L, Qin B Q. 2001. Study prospect and evolution of eutrophication in Lake Taihu. Shanghai Environ. Sci., 20(6): 263–265. (in Chinese with English abstract)

    Google Scholar 

  • Zhu B, Peng K, Xie H M. 2006. Nitrogen balance of agroecosystem in a typical watershed in the hilly area of central Sichuan Basin. Chin. J. Eco-Agric., 14: 108–111. (in Chinese with English abstract)

    Google Scholar 

  • Zhu B, Wang T, Kuang F H, Xu T P, Tang J L, Wu Y F. 2008. Characteristics of nitrate leaching from hilly crop land of purple soil. Acta Sci. Circumst. 28 (3): 525–533. (in Chinese with English abstract)

    Google Scholar 

  • Zhu Z L, Wen Q X, Frency J R. 1997. Nitrogen Soil of China. Jiangsu Science and Technology Press, China.

    Book  Google Scholar 

  • Zhu Z L, Chen D L. 2002. Nitrogen fertilizer use in China—Contribution to food production impact on the environment and best management strategies. Nutr. Cycl. Agroecosyst., 63: 117–127.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Jiang  (江涛).

Additional information

Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q07-02), the National Basic Research Program of China (973 Program) (No. 2010CB428706), the Fund for Creative Research Groups of NSFC (No. 41121064), and the National Natural Science Foundation of China (No. 41106090)

The institutions are sorted in no particular order and contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, T., Yu, Z., Song, X. et al. Nitrogen budget in the Changjiang River drainage area. Chin. J. Ocean. Limnol. 30, 654–667 (2012). https://doi.org/10.1007/s00343-012-1306-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-012-1306-5

Keyword

Navigation