Skip to main content
Log in

Temperature-controlled waveguide properties of the linearly graded-index film in the photorefractive crystal

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The theoretical description of the composite planar waveguide based on semiconductor crystals in which the film with a linear profile of the refractive index sandwiched by two photorefractive crystals with diffusion nonlinearity is proposed. Four types of the transverse magnetic stationary waves propagating along the film waveguide are found. The guided waves propagate with oscillating and non-oscillating profile and non-oscillating symmetrically and anti-symmetrically distributed across film interfaces in the different ranges of the effective refractive index. The waves exist with the discrete spectrum of the effective refractive index. The influence of the optical and geometrical parameters of the film waveguide on the guided wave characteristics and the filed intensity distributions is analyzed. In particular, the temperature of the semiconductor crystal affects the profiles and the type of the guided waves. It is shown that it is necessary to choose the optimal film thickness sufficient for excitation of the guided wave making it possible to obtain a non-oscillating decrease in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data that support the findings of this study are included within the article.

References

  1. S. Noda, F.T. Mahi, H. Zappe, Photonic crystals, in Reference module in materials science and materials engineering. ed. by Y. Ren (Elsevier, 2016), pp.101–112. https://doi.org/10.1016/B978-0-12-803581-8.00555-5

    Chapter  Google Scholar 

  2. H.E. Ruda, N. Matsuura, A properties and applications of photonic crystals, in Optical properties of materials and their applications. ed. by J. Singh (Wiley, Hoboken, 2019), pp.251–268. https://doi.org/10.1002/9781119506003.ch9

    Chapter  Google Scholar 

  3. E. Garmire, Nonlinear optics in semiconductors. Phys. Today 47, 42–48 (1994). https://doi.org/10.1063/1.881432

    Article  ADS  Google Scholar 

  4. M.J. Adams, An introduction to optical waveguides (Wiley, Chichester, 1981)

    Google Scholar 

  5. C.-L. Chen, Foundations for guided-wave optics (Wiley, 2005), p.462. https://doi.org/10.1002/0470042222

    Book  Google Scholar 

  6. F. Ebrahimi (ed.), Surface waves—new trends and developments (IntechOpen, London, 2018), p.154. https://doi.org/10.5772/intechopen.68840

    Book  Google Scholar 

  7. T. A. Laine, Electromagnetic Wave Propagation in Nonlinear Kerr Media (Royal Institute of Technology (KTH), Department of Physics, Stockholm, Sweden, 2000) 47.

  8. M. Čada, M. Qasymeh, J. Pištora, Optical wave propagation in Kerr media, in Wave propagation theories and applications. (IntechOpen, 2013), pp.175–192. https://doi.org/10.5772/51293

    Chapter  Google Scholar 

  9. T.H. Zhang, X.K. Ren, B.H. Wang, C.B. Lou, Z.J. Hu, W.W. Shao, Y.H. Xu, H.Z. Kang, J. Yang, D.P. Yang, L. Feng, J.J. Xu, Surface waves with photorefractive nonlinearity. Phys. Rev. A 76, 013827 (2007). https://doi.org/10.1103/PhysRevA.76.013827

    Article  ADS  Google Scholar 

  10. P.A. Prudkovskii, Autowaves in two-wave mixing in photorefractive media. Quantum Electron. 41, 30–33 (2011). https://doi.org/10.1070/QE2011v041n01ABEH014463

    Article  ADS  Google Scholar 

  11. D.D. Nolte, Photorefractive materials, in Encyclopedia of materials: science and technology. (Elsevier Ltd, London, 2001), pp.6955–6961. https://doi.org/10.1016/B0-08-043152-6/01232-8

    Chapter  Google Scholar 

  12. N. Kamanina (ed.), Nonlinear optics (IntechOpen, London, 2018), p.224. https://doi.org/10.5772/2073

    Book  Google Scholar 

  13. H. Chaib, T. Otto, L. Eng, Modeling the electrical and optical properties of BaTiO3 and LiNbO3 single crystals at room temperature. Ferroelectrics 304, 93–98 (2004). https://doi.org/10.1080/00150190490457609

    Article  ADS  Google Scholar 

  14. D. Dragoman, M. Dragoman, Advanced optoelectronic devices (Springer, 1999), p.424

    Book  MATH  Google Scholar 

  15. J.G. Mendoza-Alvarez, F.D. Nunes, N.B. Patel, Refractive index dependence on free carriers for GaAs. J. Appl. Phys. 51(8), 4365–4367 (1980). https://doi.org/10.1063/1.328298

    Article  ADS  Google Scholar 

  16. S. Ravindran, A. Datta, K. Alameh, Y.T. Lee, GaAs based long-wavelength microring resonator optical switches utilising bias assisted carrier-injection induced refractive index change. Opt. Express 20(14), 15610–15627 (2012). https://doi.org/10.1364/OE.20.015610

    Article  ADS  Google Scholar 

  17. J.E. Zucker, T.Y. Chang, M. Wegener, N.J. Sauer, K.L. Jones, D.S. Chemla, Large refractive index changes in tunable-electron-density InGaAs/InAlAs quantum wells. IEEE Photon. Technol. Lett. 2(1), 29–31 (1990). https://doi.org/10.1109/68.47032

    Article  ADS  Google Scholar 

  18. K. Ishida, H. Nakamura, H. Matsumura, InGaAsP/InP optical switches using carrier induced refractive index change. Appl. Phys. Lett. 50(3), 141 (1987). https://doi.org/10.1063/1.97695

    Article  ADS  Google Scholar 

  19. S. Popov, M. Enoch, Nevière, Plasmon surface waves and complex-type surface waves: comparative analysis of single interfaces, lamellar gratings, and two-dimensional hole arrays. Appl. Opt. 46(2), 154–160 (2007). https://doi.org/10.1364/AO.46.000154

    Article  ADS  Google Scholar 

  20. O. Takayama, L. Crasovan, S. Johansen, D. Mihalache, D. Artigas, L. Torner, Dyakonov surface waves: a review. Electromagnetics 28(3), 126–145 (2008). https://doi.org/10.1080/02726340801921403

    Article  Google Scholar 

  21. Yu.S. Kivshar, Chapter 8—surface Plasmon polaritons in complex settings and generalized geometries, in Handbook of Surface Science, vol. 4, (Elsevier, North-Holland, 2014), pp.253–278. https://doi.org/10.1016/B978-0-444-59526-3.00008-2.E

    Chapter  Google Scholar 

  22. K.F. Sergeichev, D.M. Karfidov, S.E. Andreev, Yu.E. Sizov, V.I. Zhukov, Excitation and propagation of Sommerfeld-Zenneck surface waves on a conducting strip in the centimeter-wave band. J. Commun. Technol. Electron. 63, 326–334 (2018). https://doi.org/10.1134/S1064226918040101

    Article  Google Scholar 

  23. M. Gryga, D. Vala, P. Kolejak, L. Gembalova, D. Ciprian, P. Hlubina, One-dimensional photonic crystal for Bloch surface waves and radiation modes-based sensing. Opt. Mater. Express 9, 4009–4022 (2019). https://doi.org/10.1364/OME.9.004009

    Article  ADS  Google Scholar 

  24. K.M. Leung, Propagation of nonlinear surface polaritons. Phys. Rev. A 31, 1189–1192 (1985). https://doi.org/10.1103/PhysRevA.31.1189

    Article  ADS  Google Scholar 

  25. D. Mihalache, M. Bertolotti, C. Sibilia, Nonlinear wave propagation in planar structures. Prog. Opt. 27, 227–313 (1989). https://doi.org/10.1016/S0079-6638(08)70087-8

    Article  ADS  Google Scholar 

  26. A.D. Boardman, M.M. Shabat, R.F. Wallis, TE waves at an interface between linear gyromagnetic and nonlinear dielectric media. J. Phys. D Appl. Phys. 24, 1702–1707 (1991). https://doi.org/10.1088/0022-3727/24/10/002

    Article  ADS  Google Scholar 

  27. D.A. Shilkin, E.V. Lyubin, A.A. Fedyanin, Nonlinear excitation and self-action of Bloch surface waves governed by gradient optical forces. ACS Photonics 9(1), 211–216 (2022). https://doi.org/10.1021/acsphotonics.1c01402

    Article  Google Scholar 

  28. T. Touam, F. Yergeau, Analytical solution for a linearly graded-index-profile planar waveguide. Appl. Opt. 32, 309–312 (1993). https://doi.org/10.1364/AO.32.000309

    Article  ADS  Google Scholar 

  29. W.-Y. Lee, S.-Y. Wang, Guided-wave characteristics of optical graded-index planar waveguides with metal cladding: a simple analysis method. J. Lightwave Technol. 13(3), 416–421 (1995). https://doi.org/10.1109/50.372436

    Article  ADS  Google Scholar 

  30. P. Karasinski, R. Rogozinski, Influence of refractive profile shape on the distribution of modal attenuation in planar structures with absorption cover. Opt. Commun. 269(1), 76–88 (2007). https://doi.org/10.1016/j.optcom.2006.07.067

    Article  ADS  Google Scholar 

  31. A.B. Shvartsburg, A. Maradudin, Waves in gradient metamaterials (World Scientific, Singapore, 2013), p.339. https://doi.org/10.1142/8649

    Book  Google Scholar 

  32. S. Chatterjee, P.R. Chaudhuri, Some unique propagation characteristics of linearly graded multilayered planar optical waveguides. J. Basic Appl. Phys. 3(1), 1–9 (2014)

    Google Scholar 

  33. A.J. Hussein, Z.M. Nassar, S.A. Taya, Dispersion properties of slab waveguides with a linear graded-index film and a nonlinear substrate. Microsyst. Technol. 27(7), 2589–2594 (2021). https://doi.org/10.1007/s00542-020-05016-z

    Article  Google Scholar 

  34. S.A. Taya, A.J. Hussein, O.M. Ramahi, I. Colak, Y.B. Chaouche, Dispersion curves of a slab waveguide with a nonlinear covering medium and an exponential graded-index thin film (transverse magnetic case). J. Opt. Soc. Am. B 38(11), 3237–3243 (2021). https://doi.org/10.1364/JOSAB.439034

    Article  ADS  Google Scholar 

  35. A.J. Hussein, S.A. Taya, D. Vigneswaran, R. Udiayakumar, A. Upadhyay, T. Anwar, I.S. Amiri, Universal dispersion curves of a planar waveguide with an exponential graded-index guiding layer and a nonlinear cladding. Results Phys. 20, 103734 (2021). https://doi.org/10.1016/j.rinp.2020.103734

    Article  Google Scholar 

  36. S.E. Savotchenko, Surface waves in linearly graded-index and intensity-dependent index layered structure. J. Opt. Soc. Am. A 39(7), 1210–1217 (2022). https://doi.org/10.1364/JOSAA.451297

    Article  ADS  Google Scholar 

  37. S.E. Savotchenko, The surface waves propagating along the contact between the layer with the constant gradient of refractive index and photorefractive crystal. J. Opt. 24(4), 045501 (2022). https://doi.org/10.1088/2040-8986/ac51e9

    Article  ADS  Google Scholar 

  38. S.E. Savotchenko, The composite planar waveguide structure consisting of the linearly graded-index layer and the nonlinear layer formed with an increasing the electric field. Optik 252, 168542 (2022). https://doi.org/10.1016/j.ijleo.2021.168542

    Article  ADS  Google Scholar 

  39. S.E. Savotchenko, Light localization in a linearly graded-index substrate covered by intensity dependent nonlinear self-focusing cladding. J. Opt. 24, 065503 (2022). https://doi.org/10.1088/2040-8986/ac6bab

    Article  ADS  Google Scholar 

  40. S.E. Savotchenko, Guided waves in a graded-index substrate covered by an intensity-dependent defocusing nonlinear medium. Appl. Phys. B Lasers Opt. 128(8), 153 (2022). https://doi.org/10.1007/s00340-022-07872-1

    Article  ADS  Google Scholar 

  41. S.E. Savotchenko, Features of the bound state formation near a nonlinear defect in the presence of a homogeneous external field. Eur. Phys. J. Plus 137, 867 (2022). https://doi.org/10.1140/epjp/s13360-022-03065-z

    Article  Google Scholar 

  42. I.V. Shadrivov, A.A. Sukhorukov, Yu.S. Kivshar, A.A. Zharov, A.D. Boardman, P. Egan, Nonlinear surface waves in left-handed materials. Phys. Rev. E 69, 016617–016621 (2004). https://doi.org/10.1103/PhysRevE.69.016617

    Article  ADS  Google Scholar 

  43. Y.V. Bludov, D.A. Smirnova, Y.S. Kivshar, N.M.R. Peres, M.I. Vasilevsky, Nonlinear TE-polarized surface polaritons on grapheme. Phys. Rev. B. (2014). https://doi.org/10.1103/PhysRevB.89.035406

    Article  Google Scholar 

  44. O. Takayama, A.A. Bogdanov, A.V. Lavrinenko, Photonic surface waves on metamaterial interfaces. J. Phys. Condens. Matter 29(46), 463001 (2017). https://doi.org/10.1088/1361-648X/aa8bdd

    Article  ADS  Google Scholar 

  45. B.A. Malomed, D. Mihalache, Nonlinear waves in optical and matter-wave media: a topical survey of recent theoretical and experimental results. Rom. J. Phys. 64, 106 (2019)

    Google Scholar 

  46. D. Mihalache, Localized structures in optical and matter-wave media: a selection of recent studies. Rom. Rep. Phys. 73, 403 (2021)

    Google Scholar 

  47. D. Cheng, W. Wandan, C. Pan, C. Hou, S. Chen, D. Mihalache, F. Baronio, Photonic rogue waves in a strongly dispersive coupled-cavity array involving self-attractive Kerr nonlinearity. Phys. Rev. A 105, 013717 (2022). https://doi.org/10.1103/PhysRevA.105.013717

    Article  ADS  Google Scholar 

  48. P.F. Qi, Z.J. Hu, R. Han, T.H. Zhang, J.G. Tian, J.J. Xu, Apodized waveguide arrays induced by photorefractive nonlinear surface waves. Opt. Express 23, 31144–31149 (2015). https://doi.org/10.1364/OE.23.031144

    Article  ADS  Google Scholar 

  49. P. Qi, T. Feng, S. Wang, R. Han, Z. Hu, T. Zhang, J. Tian, J. Xu, Photorefractive surface nonlinearly chirped waveguide arrays. Phys. Rev. A 93, 053822 (2016). https://doi.org/10.1103/PhysRevA.93.053822

    Article  ADS  Google Scholar 

  50. L. Chun-yang, J. Ying, S. De, M. Yi-ning, Y. Ji-kai, C. Wei-jun, Guided modes in thin layer waveguide induced by photorefractive surface waves, Chinese. J. Lumin. 39, 1572–1578 (2018). https://doi.org/10.3788/fgxb20183911.1572

    Article  Google Scholar 

  51. M.S. Hamada, A.I. Assad, H.S. Ashour, M.M. Shabat, Nonlinear magnetostatic surface waves in a ferrite-left-handed waveguide structure. J. Microw. Optoelectr. 5, 45–54 (2006)

    Google Scholar 

  52. S.E. Savotchenko, Nonlinear surface waves in a symmetric three-layer structure that is composed of optical media with different formation mechanisms of nonlinear response. Opt. Spectrosc. 128(3), 345–354 (2020). https://doi.org/10.1134/S0030400X20030170

    Article  ADS  Google Scholar 

  53. S.E. Savotchenko, Propagation of surface waves along a dielectric layer in a photorefractive crystal with a diffusion mechanism for the nonlinearity formation. Quantum Electron. 49(9), 850–856 (2019). https://doi.org/10.1070/QEL16968

    Article  ADS  Google Scholar 

  54. S.E. Savotchenko, Nonlinear surface TM waves in a Kerr defocusing nonlinear slab sandwiched between photorefractive crystals. Solid State Commun. 296(7), 32–36 (2019). https://doi.org/10.1016/j.ssc.2019.04.008

    Article  ADS  Google Scholar 

  55. S.E. Savotchenko, Nonlinear surface waves at the interface between optical media with different nonlinearity induction mechanisms. J. Exp. Theor. Phys. 129(2), 159–167 (2019). https://doi.org/10.1134/S1063776119070100

    Article  ADS  Google Scholar 

  56. S.E. Savotchenko, Effect of the temperature on the redistribution of an energy flux carried by surface waves along the interface between crystals with different mechanisms of formation of a nonlinear response. J. Exp. Theor. Phys. Lett. 109(11), 744–748 (2019). https://doi.org/10.1134/S0021364019110146

    Article  Google Scholar 

  57. Y. Yuan, S. Zhou, X. Wang, Modulating properties by light ion irradiation: From novel functional materials to semiconductor power devices. J. Semicond. 43(6), 063101 (2022). https://doi.org/10.1088/1674-4926/43/6/063101

    Article  ADS  Google Scholar 

  58. G. Eliashberg, G. Klimovitch, A. Rylyakov, On the temperature dependence of the London penetration depth in a superconductor. J. Supercond. 4, 393–396 (1991). https://doi.org/10.1007/BF00618221

    Article  ADS  Google Scholar 

  59. V.G. Kogan, R. Prozorov, Temperature dependence of London penetration depth anisotropy in superconductors with anisotropic order parameters. Phys. Rev. B 103(5), 054502 (2021). https://doi.org/10.1103/PhysRevB.103.054502

    Article  ADS  Google Scholar 

  60. D. Mihalache, G.I. Stegeman, C.T. Seaton, E.M. Wright, R. Zanoni, A.D. Boardman, T. Twardowski, Exact dispersion relations for transverse magnetic polarized guided waves at a nonlinear interface. Opt. Lett. 12, 187–189 (1987). https://doi.org/10.1364/OL.12.000187

    Article  ADS  Google Scholar 

  61. B.A. Usievich, DKh. Nurligareev, V.A. Sychugov, L.I. Ivleva, P.A. Lykov, N.V. Bogodaev, Nonlinear surface waves on the boundary of a photorefractive crystal. Quantum Electron. 40, 437–440 (2010). https://doi.org/10.1070/QE2010v040n05ABEH014223

    Article  ADS  Google Scholar 

  62. B.A. Usievich, DKh. Nurligareev, V.A. Sychugov, L.I. Ivleva, P.A. Lykov, N.V. Bogodaev, Surface photorefractive wave on the boundary of a photorefractive metal-coated crystal. Quantum Electron. 41, 262–266 (2011). https://doi.org/10.1070/QE2013v043n01ABEH014913

    Article  ADS  Google Scholar 

  63. S.A. Chetkin, I.M. Akhmedzhanov, Optical surface wave in a crystal with diffusion photorefractive nonlinearity. Quantum Electron. 41, 980–985 (2011). https://doi.org/10.1070/QE2011v041n11ABEH014660

    Article  ADS  Google Scholar 

  64. DKh. Nurligareev, B.A. Usievich, V.A. Sychugov, L.I. Ivleva, Characteristics of surface photorefractive waves in a nonlinear SBN-75 crystal coated with a metal film. Quantum Electron. 43, 14–20 (2013). https://doi.org/10.1070/QE2013v043n01ABEH014913

    Article  ADS  Google Scholar 

  65. S.E. Savotchenko, Surface waves at the boundary of a photorefractive crystal and a medium with positive Kerr nonlinearity. Phys. Solid State 62(6), 1011–1016 (2020). https://doi.org/10.1134/S1063783420060268

    Article  ADS  Google Scholar 

  66. S.E. Savotchenko, Effect of the dark illumination Intensity on the characteristics of surface waves propagating along the interface between photorefractive and nonlinear Kerr crystals. Russ. Phys. J. 63(1), 160–170 (2020). https://doi.org/10.1007/s11182-020-02015-5

    Article  Google Scholar 

  67. S.E. Savotchenko, Surface waves at the boundary of a medium with a refractive index switching and a crystal with the diffusion-type photorefractive nonlinearity. Phys. Solid State 62(8), 1415–1420 (2020). https://doi.org/10.1134/S1063783420080284

    Article  ADS  Google Scholar 

  68. G.E. Andrews, R. Askey, R. Roy, Special functions (Cambridge University Press, 1999), p.664. https://doi.org/10.1017/CBO9781107325937

    Book  MATH  Google Scholar 

  69. W. Van Assche, Ordinary special functions, in Encyclopedia of mathematical physics. ed. by J.-P. Françoise, G.L. Naber, T.S. Tsun (Academic Press, New York, 2006), pp.637–645. https://doi.org/10.1016/B0-12-512666-2/00395-3

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The author wrote this paper and contributed with analytical calculations supplemented by graphical data.

Corresponding author

Correspondence to S. E. Savotchenko.

Ethics declarations

Conflict of interest

The author declares that there are no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savotchenko, S.E. Temperature-controlled waveguide properties of the linearly graded-index film in the photorefractive crystal. Appl. Phys. B 129, 7 (2023). https://doi.org/10.1007/s00340-022-07950-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07950-4

Navigation