Skip to main content
Log in

Time investigation and enhancement of the photothermal lens effect in the mode-matched configuration

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The geometrical configuration of the dual-beam photothermal lens (PTL) experiment has a major role in the PTL sensitivity. This work examines the mode-matched configuration in terms of temporal evolution of PTL signal amplitude. The main results concern the improvement of the PTL signal under specific conditions with the mode-match arrangement considered in several previous works as less sensitive, but less influenced by the aberration effects. The amplitude of the obtained PTL signal is considerably increased to be of the same order of magnitude as that given by the mode-mismatched configuration. This occurred by reducing the probe beam waist at the sample to probe a part of temperature gradient area having a photothermal thin lens behavior. The experimental PTL signal is positive and presents low optical aberrations and a linear dependence with the excitation power. For the purpose of verifying the reliability of this experimental setup, the thermal diffusivities and the absorption coefficients of paraffin oil and ethanol were measured and compared to the results reported in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.P. Gordon, R.C.C. Leite, R.S. Moore, S.P.S. Porto, J.R. Whinnery, Long-transient effects in lasers with inserted liquid samples. J. App. Phys. DOI 10(1063/1), 1713919 (1965)

    Google Scholar 

  2. J.R. Whinnery, Laser measurement of optical absorption in liquids. Acc. of Chem. Res. (1974). https://doi.org/10.1021/ar50079a003

    Article  Google Scholar 

  3. M. Franko, C.D. Tran, Analytical thermal lens instrumentation. Rev. Sci. Instrum. DOI 10(1063/1), 1147512 (1996)

    Google Scholar 

  4. R.C.C. Leite, R.S. Moore, J.R. Whinnery, Low absorption measurements by means of the thermal lens effect using an he–ne laSER. Appl. Phys. Lett. (1964). https://doi.org/10.1063/1.17540895,141-143(1964)

    Article  Google Scholar 

  5. D. Solimini, Loss measurement of organic materials at 6328 Å. J. Appl. Phys. DOI 10(1063/1), 1703200 (1966)

    Google Scholar 

  6. R.A. Cruz, A. Marcano, C. Jacinto, T. Catunda, Opt. Lett. 34, 1882–1884 (2009)

    Article  ADS  Google Scholar 

  7. M.L. Baesso, J. Shen, R.D. Snook, Chem. Phys. Lett. (1992). https://doi.org/10.1016/0009-2614

    Article  Google Scholar 

  8. M. Benitez, A. Marcano, N. Melikechi, Thermal diffusivity measurement using the mode-mismatched photothermal lens method. Opt. Eng 10(1117/1), 3119306 (2009)

    Google Scholar 

  9. M. Liu, M. Franko, Thermal lens spectrometry: still a technique on the horizon? Int. J. Thermophys. (2016). https://doi.org/10.1007/s10765-016-2072-y

    Article  Google Scholar 

  10. H. Cabrera, E. Cedeño, P. Grima, E. Marín, A. Calderón, O. Delgado, Thermal lens microscope sensitivity enhancement using a passive Fabry–Perot-type optical cavity. Phys. Lett (2016). https://doi.org/10.1088/1612-2011/13/5/

    Article  Google Scholar 

  11. L.A. Hernández-Carabalí, E. Cedeño, A. Mantilla, S. Alvarado, H. Cabrera, A.M. Mansanares, A. Calderón, E. Marín, Application of thermal lens microscopy (TLM) for measurement of Cr (VI) traces in wastewater. J Environ Manag (2019). https://doi.org/10.1016/j.jenvman

    Article  Google Scholar 

  12. S. Alvarado, E. Marín, A. Calderón, A. Marcano, Photothermal lens spectrometry measurements in highly turbid media. Thermochim. Acta (2013). https://doi.org/10.1016/j.tca.2014.08.012593

    Article  Google Scholar 

  13. A. Marcano, I. Basaldua, A. Villette, R. Edziah, J. Liu, O. Ziane, N. Melikechi, Photothermal Lens Spectrometry Measurements in Highly Turbid Media (Spectroscopy, App, 2013). https://doi.org/10.1366/12-06970

    Book  Google Scholar 

  14. C. Hu, E.T. Ogawa, P.S. Ho, Thermal diffusivity measurement of polymeric thin films using the photothermal displacement technique (On-wafer measurement. J. Appl. Phys, II, 1999). https://doi.org/10.1063/1.371650

    Book  Google Scholar 

  15. E.H. Lee, K.J. Lee, P.S. Jeon, J. Yoo, Measurement of thermal diffusivity based on the photothermal displacement technique using the minimum phase method. J. Appl. Phys. DOI 10(1063/1), 373700 (2000)

    Google Scholar 

  16. L. Bennis, V. Vyas, R. Gupta, S. Ang, W.D. Brown, Thermal diffusivity measurement of solid materials by the pulsed photothermal displacement technique. J. Appl. Phys. DOI 10(1063/1), 368535 (1998)

    Google Scholar 

  17. D. Comeau, A. Haché, N. Melikechi, Reflective thermal lensing and optical measurement of thermal diffusivity in liquids. Appl. Phys. Lett. DOI 10(1063/1), 1589199 (2003)

    Google Scholar 

  18. S. Doiron, A.A. Hache, Laser-induced thermal lens effect: a new theoretical model. App. Optics. 21, 1663 (2004)

    Google Scholar 

  19. S.J. Sheldon, L.V. Knight, J.M. Thorne, Laser-induced thermal lens effect: a new theoretical model. Appl. Opt. (1982). https://doi.org/10.1364/AO.21.001663

    Article  Google Scholar 

  20. J. Shen, R.D. Lowe, R.D. Snook, A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry. Chem. Phys. (1992). https://doi.org/10.1016/0301-0104(92)87053-C

    Article  Google Scholar 

  21. J. Shen, A.J. Soroka, R.D. Snook, A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry based on probe beam profile image detection. J. Appl. Phys. 10(1063/1), 360329 (1995)

    Google Scholar 

  22. T. Berthoud, N. Delorme, P. Mauchien, Beam geometry optimization in dual-beam thermal lensing spectrometry. Anal. Chem. (1985). https://doi.org/10.1021/ac00284a012

    Article  Google Scholar 

  23. N.J. Dovichi, J.M. Harris Laser, Laser induced thermal lens effect for calorimetric trace analysis. Anal. Chem. (1979). https://doi.org/10.1021/ac50042a034

    Article  Google Scholar 

  24. A. Marcano, H. Cabrera, M. Guerra, R.A. Cruz, C. Jacinto, T. Catunda, Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement. J. Opt. Soc. Am. B (2006). https://doi.org/10.1364/JOSAB

    Article  Google Scholar 

  25. R. Hannachi, Photothermal lens spectrometry: experimental optimization and direct quantification of permanganate in water. Sens Actu B Chem (2021). https://doi.org/10.1016/j.snb.2021.129542

    Article  Google Scholar 

  26. A. Sari, Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation and thermal properties. Energy Convers. Manag. 45, 2033 (2004)

    Article  Google Scholar 

  27. Q. He, R. Reeta Vyas, R. Gupta, Photothermal lensing detection: theory and experiment. Appl. Opt. (1997). https://doi.org/10.1364/AO.36.007046

    Article  Google Scholar 

  28. R. Gupta, Photothermal Investigations of Solids and Fluids, edited by JA Sell (Academic, New York, 1988)

    Google Scholar 

  29. S.E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (John Whiley & Sons Inc, New York, 1996)

    Book  Google Scholar 

  30. J.M. Khosrofian, B.A. Garetz, Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data. Appl. Opt. (1983). https://doi.org/10.1364/AO.22.003406

    Article  Google Scholar 

  31. S.E. Bialkowski, Photothermal lens aberration effects in two laser thermal lens spectrophotometry. Appl. Opt. (1985). https://doi.org/10.1364/AO.24.002792

    Article  Google Scholar 

  32. C.A. Carter, J.M. Harris, Comparison of models describing the thermal lens effect. Appl. Opt. (1984). https://doi.org/10.1364/AO.23.000476

    Article  Google Scholar 

  33. F. Saadallah, L. Attia, S. Abroug, N. Yacoubi, Nonradiative analysis of adulteration in coconut oil by thermal lens technique. Sens Actu A (2007). https://doi.org/10.1016/j.sna

    Article  Google Scholar 

  34. M.S. Vimal Raj, H.V. Swapna, S. SarithaDevi, Sankararaman, Nonradiative analysis of adulteration in coconut oil by thermal lens technique (Physics B, App, 2019). https://doi.org/10.1007/s00340-019-7228-6

    Book  Google Scholar 

  35. M.R. Mohebbifar, E. Mohammadi-Manesh, Experimental and numerical study of laser energy effect on the thermal lensing behavior of ethyl acetate and ethanol by thermal lens spectroscopy. Optik (2021). https://doi.org/10.1016/j.ijleo

    Article  Google Scholar 

  36. L.G. Rodriguez, J.L. Paz, C.C. Vera, Frequency-resolved thermal lensing: an approach for thermal diffusivity measurements in liquid samples. J. Non Opt Phy Mater (2015). https://doi.org/10.1142/s0218863515500320

    Article  Google Scholar 

  37. H. Cabrera, F. Matroodi, H.D. Cabrera-Díaz, E.E. Ramírez-Miquet, Frequency-resolved photothermal lens: An alternative approach for thermal diffusivity measurements in weak absorbing thin samples (J. Heat Mass Trans, Inter, 2020). https://doi.org/10.1016/j.ijheatmasstransfer

    Book  Google Scholar 

  38. J. Chen, H. Xing, T. Zhan, L. Chen, M. He, Y. Zhang, Measurement of thermal diffusivity of ethanol from (293 to 564) K and up to 10 MPa in vicinity of the critical point. Fluid Phase Equilib. (2022). https://doi.org/10.1016/j.fluid.2021.113276

    Article  Google Scholar 

  39. H. Cabrera, J. Akbar, D. Korte, I. Ashraf, E.E. Ramírez-Miquet, E. Marín, Absorption Spectra of Ethanol and Water Using a Photothermal Lens Spectrophotometer (Spectroscopy, App, 2018). https://doi.org/10.1177/0003702818759073

    Book  Google Scholar 

  40. H. Cabrera, I. Ashraf, F. Matroodi, E.E. Ramírez-Miquet, J. Akbar, J.J. Suárez-Vargas, J.F. Barrera Ramírez, D. Korte, H. Budasheva, J. Niemela, Photothermal lens technique: a comparison between conventional and self-mixing schemes. Laser Phys. 29, 055703 (2019)

    Article  ADS  Google Scholar 

  41. H. Cabrera, L. Goljat, D. Korte, E. Marín, M. Franko, A multi-thermal-lens approach to evaluation of multi-pass probe beam configuration in thermal lens spectrometry. Analy chimica acta. 1100, 182–190 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Pr. Noureddine Melikechi for helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riadh Hannachi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soyeh, I., Hannachi, R., Sammouda, H. et al. Time investigation and enhancement of the photothermal lens effect in the mode-matched configuration. Appl. Phys. B 128, 174 (2022). https://doi.org/10.1007/s00340-022-07894-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07894-9

Navigation