Skip to main content

Advertisement

Log in

Study of thermal parameters of polymethyl methacrylate in different concentrations by laser mode-mismatched thermal lens spectroscopy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this experimental work, the thermal parameters of polymethyl methacrylate/chloroform solution at different concentrations were investigated using laser mode-mismatched thermal lens spectroscopy. For this purpose, first, the thermal lensing parameters of chloroform, propanone and carbon tetrachloride were measured. The measured values were in agreement with the reference values. The maximum deviation of measured values from reference date for these materials was obtained 1.8%, 1.9% and 1.9%, respectively. Then, the thermal lens process for concentrations of 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7 and 0.75 \(\frac{{\text{g}}}{{{\text{mL}}}}\) polymethyl methacrylate was studied. The results showed that with decreasing concentration, both the creation and relaxation of the thermal lens process occur more rapidly. In addition, for each of these w/v ratios, the thermal diffusivity was measured. It was found that for this polymer, increasing the concentration leads to a decrease in thermal diffusivity. For changes in the concentration of 0.1–0.75 \(\frac{{\text{g}}}{{{\text{mL}}}}\), the thermal diffusivity of polymethyl methacrylate/chloroform solution changes in the range of 0.75–0.26 \(\frac{{{\text{m}}^{2} }}{{\text{s}}}\). In fact, an increase in the concentration of polymethyl methacrylate leads to enhanced scattering of thermal waves, and as a result, the thermal diffusivity is reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Ladaru, H. Moisa, A.V. Ciurea, Biomatrials used in cranioplasty new aspects and perspectives. Proc. Rom. Acad. Series B 21(2), 111–119 (2019)

    Google Scholar 

  2. U. Ali, K.J.B.A. Karim, N.A. Buang, A review of the properties and applications of poly (Methyl Methacrylate) (PMMA). Polym. Rev. 55(4), 678–705 (2015)

    Article  Google Scholar 

  3. K. Myer, Handbook of Materials Selection (Wiley, Hoboken, 2002)

    Google Scholar 

  4. A.C. Henry, T.J. Tutt, M. Galloway, Y.Y. Davidson, C.S. McWhorter, S.A. Soper, R.L. McCarley, Surface modification of poly(methyl methacrylate) used in the fabrication of microanalytical devices. Anal. Chem. 72(21), 5331–5337 (2000)

    Article  Google Scholar 

  5. B. Adhikari, S. Majumdar, Polymers in sensor applications. Prog. Polym. Sci. 29(7), 699–766 (2004)

    Article  Google Scholar 

  6. J.J. Shah, J. Geist, L.E. Locascio, M. Gaitan, M.V. Rao, W.N. Vreeland, Surface modification of poly(methyl methacrylate) for improved adsorption of wall coating polymers for microchip electrophoresis. Electrophoresis 27(19), 3788–3796 (2006)

    Article  Google Scholar 

  7. L.H. Lee, W.C. Chen, High-refractive-index thin films prepared from trialkoxysilane-capped poly (methyl methacrylate). Titania Mater. Chem. Mater. 15, 1137–1142 (2001)

    Article  Google Scholar 

  8. N. Kanth, W. Xu, U. Prasad, D. Ravichandran, A.M. Kannan, K. Song, PMMA-TiO2 fibers for the photocatalytic degradation of water pollutants. Nanomaterials 10(7), 1279 (2020)

    Article  Google Scholar 

  9. S. Gao, C. Baker, L. Chen, X. Bao, Fabrication of chirped fiber Bragg gratings in a non-uniform single-core As2Se3-PMMA tapered fiber. J. Lightwave Technol. 38(15), 3822–3832 (2020)

    Google Scholar 

  10. A.A. Raffi, M.A. Rahman, M.A.M. Salim, N.J. Ismail, M.H.D. Othman, A.F. Ismail, H. Bakhtiar, Surface treatment on polymeric polymethyl methacrylate (PMMA) core via dip-coating photopolymerisation curing method. Opt. Fiber Technol. 57, 102215 (2020)

    Article  Google Scholar 

  11. P. Miluski, M. Kochanowicz, J. Żmojda, A. Baranowska, T. Ragiń, D. Dorosz, White light emission PMMA fibre co-doped with 1,4-Bis (2-methylstyryl) benzene and Rhodamine B for new optical applications. Ceram. Int. 46(16), 26260–26263 (2020)

    Article  Google Scholar 

  12. J. Kost, R. Langer, Responsive polymeric delivery systems. Adv. Drug Deliv. Rev. 64, 327–341 (2012)

    Article  Google Scholar 

  13. M. Shi, J.D. Kretlow, P.P. Spicer, Y. Tabata, N. Demian, M.E. Wong, F.K. Kasper, A.G. Mikos, Antibiotic-releasing porous polymethylmethacrylate/gelatin/antibiotic constructs for craniofacial tissue engineering. J. Control. Release 152(1), 196–205 (2011)

    Article  Google Scholar 

  14. S. Mishra, G. Sen, Microwave initiated synthesis of polymethylmethacrylate grafted guar (GG-g-PMMA), characterizations and applications. Int. J. Biol. Macromol. 48(4), 688–694 (2011)

    Article  Google Scholar 

  15. A. Leal-Junior, A. Frizera, C. Marques, M.J. Pontes, Mechanical properties characterization of polymethyl methacrylate polymer optical fibers after thermal and chemical treatments. Opt. Fiber Technol. 43, 106–111 (2018)

    Article  ADS  Google Scholar 

  16. R. Shanti, F. Bella, Y.S. Salim, S.Y. Chee, S. Ramesh, K. Ramesh, Mater. Des. 108, 560–569 (2016)

    Article  Google Scholar 

  17. S.S. Suresh, S. Mohanty, S.K. Nayak, Preparation and characterization of recycled blends using poly (vinyl chloride) and poly(methyl methacrylate) recovered from waste electrical and electronic equipments. J. Clean. Prod. 149, 863–873 (2017)

    Article  Google Scholar 

  18. M.R. Mohebbifar, The laser power effect on the performance of gas leak detector based on laser photo-acoustic spectroscopy. Sens. Actuators A 305(5), 1–15 (2020)

    Google Scholar 

  19. M.R. Mohebbifar, The signal-to-noise ratio measurement in chloroform detection in the presence of krypton buffer gas by laser photoacoustic method. Belgorod State Univ. Sci. Bull. 51(3), 102–108 (2019)

    Google Scholar 

  20. Y. Ma, Y. He, Y. Tong, Yu. Xin, F.K. Tittel, Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection. Opt. Express 26(24), 32103–32110 (2018)

    Article  ADS  Google Scholar 

  21. B. Dibaee, P. Parvin, A. Bavali, V. Daneshafrooz, M.R. Mohebbifar, Effect of colliding partners on the performance of SF6 and SO2 trace measurements in photoacoustic spectroscopy. Appl. Opt. 54(30), 8971–8981 (2015)

    Article  ADS  Google Scholar 

  22. M.R. Mohebbifar, J. Khalilzadeh, B. Dibaee, P. Parvin, Effect of buffer gases on the performance of SO2 trace measurement based on photoacoustic spectroscopy. Infrared Phys. Technol. 65, 61–66 (2014)

    Article  ADS  Google Scholar 

  23. M.R. Mohebbifar, High-sensitivity detection and quantification of CHCl3 vapors in various gas environments based on the photoacoustic spectroscopy. Microw. Opt. Technol. Lett. 10(10), 1–8 (2019)

    Google Scholar 

  24. W.B. Deusa, M. Venturaa, J.R. Silvaa, L.H.C. Andradea, T. Catundab, S.M. Limaa, Monitoring of the ester production by near-near infrared thermal lens spectroscopy. Fuel 253, 1090–1096 (2019)

    Article  Google Scholar 

  25. L. Mingqiang, Influence of thermal conductivity on photothermal lens spectroscopy. Thermochim. Acta 672, 126–132 (2019)

    Article  Google Scholar 

  26. B.A.N. Asbaghi, N. Shokoufi, S.N. Hajibaba, Bovine serum albumin determination based on methylene blue detection by photothermal lens spectroscopy. Anal. Biochem. 594, 113621 (2020)

    Article  Google Scholar 

  27. M.R. Mohebbifar, Investigation of thermal lens performance of rhodamine 6G and rhodamine B at different concentration using pump/probe laser thermal lens spectroscopy. Optik 242(166902), 1–8 (2021)

    Google Scholar 

  28. M.R. Mohebbifar, Experimental comparison of methods based on falling and rising signal regions for thermal diffusivity measurement by pulsed dual-beam thermal lens spectroscopy. Measurement 156, 107611 (2020)

    Article  Google Scholar 

  29. M.R. Mohebbifar, E. Mohammadi-Manesh, Experimental and numerical study of laser energy effect on the thermal lensing behavior of ethyl acetate and ethanol by thermal lens spectroscopy. Optik 228, 166149 (2021)

    Article  ADS  Google Scholar 

  30. R.D. Snook, R.D. Lowe, Thermal lens spectrometry. A review. Analyst 120, 2051–2068 (1995)

    Article  ADS  Google Scholar 

  31. M.E. Long, R.L. Swofford, A.C. Albrecht, Thermal lens technique: a new method of absorption spectroscopy. Science 191(4223), 183–185 (1976)

    Article  ADS  Google Scholar 

  32. Edward D. Palik, Handbook of Optical Constants of Solids, Chapter 3—Thermo-Optic Coefficients, vol V (1997), pp. 115–261 

  33. C.V. Bindhu, S.S. Harilal, V.P.N. Nampoori, Thermal diffusivity measurement in organic liquid using transient thermal lens colorimetry. Opt. Eng. 37(10), 2791 (1998)

    Article  ADS  Google Scholar 

  34. R. Zamiri, B.Z. Azmi, M. Shahril Husin, G. Zamiri, H.A. Ahangar, Z. Rizwan, Thermal diffusivity measurement of copper nanofluid using pulsed laser thermal lens technique. J. Euro. Opt. Soc. Rap. Public. 7, 12022 (2012)

    Article  Google Scholar 

  35. A.J. Twarowski, D.S. Kliger, Multiphoton spectra using thermal blooming. Chem. Phys. 20, 259–264 (1977)

    Article  Google Scholar 

  36. A.J. Twarowski, D.S. Kliger, Multiphoton absorption spectra using thermal blooming—theory. Chem. Phys. 20, 253–258 (1977)

    Article  Google Scholar 

  37. K. Mori, T. Imasaka, N. Ishibashi, Thermal lens spectrophotometry based on pulsed laser excitation. Anal. Chem. 54(12), 2034–2038 (1982)

    Article  Google Scholar 

  38. S.E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis, Wiley, Hoboken, NJ, (1996) pp. 290

  39. H. Cabrera, A. Marcano, Y. Castellanos, Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry. Condens. Matter Phys. 9(46), 385–389 (2006)

    Article  Google Scholar 

  40. M. Benitez, A. Marcano, N. Melikechi, Thermal diffusivity measurement using the mode-mismatched photothermal lens method. Opt. Eng. 48(4), 043604 (2009)

    Article  ADS  Google Scholar 

  41. K. Raznjevic, Handbook of Thermodynamic Tables and Charts (Hemisphere, Washington, DC, 1976)

    Google Scholar 

  42. R.C. Weast, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton FL, 1987)

    Google Scholar 

  43. VDI e. V., VDI Heat Atlas (VDI Wärmeatlas), Auflage,VDI-Verlag (Düsseldorf) (Springer, 1988), pp. 21–29

  44. A. Missenard, Conductivite Thermique des Solides, Liquides, Gas et Leure Melanges (Editions Eyrolles, Paris, 1965), pp. 122

  45. S.R. Atalla, A.A. Ei-sharkawy, F.A. Gasser, Measurement of thermal properties of liquids with an AC heated-wire technique. Int. J. Thermophys. 2(2), 155 (1981)

    Article  ADS  Google Scholar 

  46. D.R. Lide, CRC Handbook of Chemistry and Physics, 85th edn. vol 85 (2005), pp. 6–214

  47. L. Qun-Fang, L. Rui-Sen, Ni. Dan-Yan, H. Yu-Chun, Thermal conductivities of some organic solvents and their binary mixtures. J. Chem. Eng. Data 42, 971–974 (1997)

    Article  Google Scholar 

  48. M. Fujii, X. Zhang, N. Imaishi, S. Fujiwara, T. Sakamoto, Simultaneous measurements of thermal conductivity and thermal diffusivity of liquids under microgravity conditions. Int. J. Thermophys. 18(2), 327–339 (1997)

    Article  ADS  Google Scholar 

  49. C. Baroncini, G. Latini, P. Pierpaoli, Thermal conductivity of organic liquid binary mixtures: measurements and prediction method. Int. J. Thermophys. 5(4), 387–401 (1984)

    Article  ADS  Google Scholar 

  50. Y.S. Touloukian, P.E. Liley, S.C. Saxena, Thermophysical properties of matter—the TPRC data series. Volume 3. Thermal conductivity—nonmetallic liquids and gases. Data book (1970) pp. 124-139

  51. J.K. Horrocks, E. McLaughlin, Thermal conductivity of simple molecules in the condensed state. Trans. Faraday Soc. 56, 206–212 (1960)

    Article  Google Scholar 

  52. K.R. Vijesh, U. Sony, M. Ramya, S. Mathew, V.P.N. Nampoori, S. Thomas, Concentration dependent variation of thermal diffusivity in highly fluorescent carbon dots using dual beam thermal lens technique. Int. J. Thermal Sci. 126, 137–142 (2018)

    Article  Google Scholar 

  53. B.R. Kumar, N.S. Basheer, S. Jacob, A. Kurian, S.D. George, Thermal-lens probing of the enhanced thermal diffusivity of gold nanofluid-ethylene glycol mixture. J. Thermal Anal. Calorim. 119, 453–460 (2015)

    Article  Google Scholar 

  54. R. Prasher, W. Evans, P. Meakin, J. Fish, P. Phelan, P. Keblinski, Effect of aggregation on thermal conduction in colloidal nanofluids. Appl. Phys. Lett. 89, 143119 (2006)

    Article  ADS  MATH  Google Scholar 

  55. W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, P. Keblinski, Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int. J. Heat Mass Transf. 51, 1431–1438 (2008)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Professor Dariush Souri (Professor of Condensed Matter Physics, Malayer University) for his helpful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Mohebbifar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebbifar, M.R. Study of thermal parameters of polymethyl methacrylate in different concentrations by laser mode-mismatched thermal lens spectroscopy. Appl. Phys. A 127, 504 (2021). https://doi.org/10.1007/s00339-021-04642-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04642-2

Keywords

Navigation