Skip to main content
Log in

Coherent terahertz radiation generation by a flattened Gaussian laser beam at a plasma–vacuum interface

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We investigate a way for generating strong terahertz (THz) radiation source at a plasma–vacuum interface from laser interactions with a plasma slab. We utilize the special focusing properties of a flattened Gaussian laser beam to generate high-field THz radiation. The laser exerts a nonlinear ponderomotive force, imparting an oscillatory velocity to plasma electrons. The coupling of the oscillatory velocity to the sharp density gradient (at plasma–vacuum interface) generates plasma currents. When the transverse field originated in plasma region crosses the plasma–vacuum interface, electromagnetic radiation at THz frequency is emitted. Flattened Gaussian beams, having the same energy as Gaussian ones, evacuate electrons from a larger area of the plasma, generating stronger plasma current and thus relatively stronger THz fields. Employing a flattened Gaussian laser beam with \(\mathrm{P}=3\) (where P is the order of the Gaussian shape) yields stronger THz radiation with relatively higher electric field of about 1 MV/cm with a peak frequency of 18 THz. Compared to the case of an ordinary Gaussian beam, THz field strength is substantially enhanced for the flattened Gaussian beam case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.A. Hafez, X. Chai, A. Ibrahiml, S. Mondal, D. Ferachou, X. Ropagnol, T. Ozaki, J. Opt. 18, 093004 (2016)

    Article  ADS  Google Scholar 

  2. H. Hirori, K. Tanaka, IEEE J. Sel. Top. Quant. Electron. 19, 8401110 (2013)

    Article  ADS  Google Scholar 

  3. R.A. Lewis, J. Phys. D Appl. Phys. 47, 374001 (2014)

    Article  Google Scholar 

  4. J.H. Son, S.J. Oh, H. Cheon, J. Appl. Phys. 125, 190901 (2019)

    Article  ADS  Google Scholar 

  5. B.B. Hu, M.C. Nuss, Opt. Lett. 20, 1716 (1995)

    Article  ADS  Google Scholar 

  6. J. Hara, D. Grischkowsky, Opt. Lett. 26, 1918 (2001)

    Article  ADS  Google Scholar 

  7. A. Curcio, A. Marocchino, V. Dolci, S. Lupi, M. Petrarca, Sci. Rep. 8, 1052 (2018)

    Article  ADS  Google Scholar 

  8. J.H. Booske, R.J. Dobbs, C.D. Joye, C.L. Kory, G.R. Neil, G. Park, J. Park, R.J. Temkin, IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011)

    Article  ADS  Google Scholar 

  9. E.A. Nanni, W.R. Huang, K.H. Hong, K. Ravi, A. Fallahi, G. Moriena, R.J.D. Miller, F.X. Kartner, Nat. Commun. 6, 8486 (2015)

    Article  ADS  Google Scholar 

  10. L. Consolino, S. Bartalini, P.D. Natale, J. Infrared Millimeter Terahertz Waves 28, 1289 (2017)

  11. S.S. Dhillon, M.S. Vitiello, E.H. Linfield, A.G. Davies, M.C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G.P. Williams, E. Castro-Camus, D.R.S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C.A. Schmuttenmaer, T.L. Cocker, R. Huber, A.G. Markelz, Z.D. Taylor, V.P. Wallace, J.A. Zeitler, J. Sibik, T.M. Korter, B. Ellison, S. Rea, P. Goldsmith, K.B. Cooper, R. Appleby, D. Pardo, P.G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J.E. Cunningham, M.B. Johnston, J. Phys. D Appl. Phys. 50, 043001 (2017)

    Article  ADS  Google Scholar 

  12. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  13. T.P. Bartel, K. Gaal, M. Woerner, T. Elsaesser, Opt. Lett. 30, 2805 (2005)

    Article  ADS  Google Scholar 

  14. J. Dai, X. Xie, X.C. Zang, Phys. Rev. Lett. 97, 103903 (2006)

    Article  ADS  Google Scholar 

  15. A. Adak, A.P.L. Robinson, P.K. Singh, G. Chatterjee, A.D. Lad, J. Pasley, G.R. Kumar, Phys. Rev. Lett. 114, 115001 (2015)

    Article  ADS  Google Scholar 

  16. A.A. Frolov, Plasma Phys. Control. Fusion 62, 095002 (2020)

    Article  ADS  Google Scholar 

  17. S. Kalmykov, J. Elle, A. Schmitt-Sody, Plasma Phys. Control. Fuison 62, 115022 (2020)

    Article  ADS  Google Scholar 

  18. H. Hamster, A. Sullivan, S. Gordon, W. White, R.W. Falcone, Phys. Rev. Lett. 71, 2725 (1993)

    Article  ADS  Google Scholar 

  19. K.B. Kwon, T. Kang, H.S. Song, Y.K. Kim, B. Ersfeld, D.A. Jaroszynski, M.S. Hur, Sci. Rep. 8, 145 (2018)

    Article  ADS  Google Scholar 

  20. A.A. Frolov, Plasma Phys. Rep. 36, 318 (2009)

    Article  ADS  Google Scholar 

  21. Z.M. Sheng, K. Mima, J. Zhang, Phys. Plasmas 12, 123103 (2005)

    Article  ADS  Google Scholar 

  22. A.A. Frolov, Phys. Plasmas 28, 013104 (2021)

    Article  ADS  Google Scholar 

  23. H. Feng, Z. Zhou, Y. Wu, Z. Gao, Y. Liang, N. Huang, L. Yan, H. Deng, Y. Du, R. Li, W. Lu, W. Huang, C. Tang, Phys. Rev. Appl. 15, 044032 (2021)

    Article  ADS  Google Scholar 

  24. K.N. Ovchinnikov, S.A. Uryupin, Phys. Rev. E 103, 033205 (2021)

    Article  ADS  Google Scholar 

  25. D.N. Gupta, A. Jain, Optik 227, 165824 (2021)

    Article  ADS  Google Scholar 

  26. M.C. Gurjar, K. Gopal, D.N. Gupta, V.V. Kulagin, H. Suk, IEEE Trans. Plasma Sci. 48, 3727 (2020)

    Article  ADS  Google Scholar 

  27. A. Woldegeorgis, S. Herzer, M. Almassarani, S. Marathapalli, A. Gopal, Phys. Rev. E 100, 053204 (2019)

    Article  ADS  Google Scholar 

  28. A.A. Frolov, Plasma Phys. Rep. 33, 1014 (2007)

    Article  ADS  Google Scholar 

  29. P.A. Chizhov, A.A. Ushakov, V.V. Bukin, S.V. Garnov, Laser Phys. Lett. 16, 075301 (2019)

    Article  ADS  Google Scholar 

  30. S. Saxena, S. Bagchi, M. Tayyab, B.S. Rao, S. Kumar, D.N. Gupta, J.A. Chakera, Laser Phys. 30, 036002 (2020)

    Article  ADS  Google Scholar 

  31. J. Déchard, A. Debayle, X. Davoine, L. Gremillet, L. Bergé, Phys. Rev. Lett. 120, 144801

  32. J.F. Qu, X.F. Li, X.Y. Liu, P. Liu, Y.J. Song, Z. Fu, Q. Yu, Q. Kong, Phys. Plasmas 26, 033115 (2019)

    Article  ADS  Google Scholar 

  33. A.V. Bogatskaya, N.E. Gnezdovskaia, A.M. Popov, Phys. Rev. E 102, 043202 (2020)

    Article  ADS  Google Scholar 

  34. M. Kumar, T. Kang, S. Kylychbekov, H.S. Song, M.S. Hur, Phys. Plasmas 28, 033101 (2021)

    Article  ADS  Google Scholar 

  35. K. Miyamoto, A. Lee, T. Saito, T. Akiba, K. Suizu, T. Omatsu, Appl. Phys. B 110, 321 (2013)

    Article  ADS  Google Scholar 

  36. J. Buldt, M. Mueller, H. Stark, C. Jauregui, J. Limpert, Appl. Phys. B 126, 013517 (2020)

    Article  Google Scholar 

  37. T.M. Antonsen, J.J. Palastra, H.M. Milchberg, Phys. Plasmas 14, 033107 (2007)

    Article  ADS  Google Scholar 

  38. L. Bhasin, V. Tripathi, Phys. Plasmas 18, 123106 (2011)

    Article  ADS  Google Scholar 

  39. J.J. Kim, D.G. Jang, M.S. Hur, H. Jang, H. Suk, J. Phys. D Appl. Phys. 45, 395201 (2012)

    Article  Google Scholar 

  40. M. Rodriguez, R. Bourayou, G. Mejean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eisloffel, U. Laux, A.P. Hatzes, R. Sauerbrey, L. Woste, J. Wolf, Phys. Rev. E 69, 036607 (2004)

    Article  ADS  Google Scholar 

  41. F. Gori, Opt. Commun. 107, 335 (1994)

    Article  ADS  Google Scholar 

  42. M. Santarsiero, D. Aiello, R. Borghi, S. Vicalvi, J. Mod. Opt. 44, 633 (1997)

    Article  ADS  Google Scholar 

  43. M.G. Zhao, C. Xu, M. Minty, Progress Electromagn. Res. M 64, 35 (2018)

    Article  Google Scholar 

  44. B. Mercier, J. Rousseau, A. Jullien, L. Antonucci, Opt. Commun. 283, 2900 (2010)

    Article  ADS  Google Scholar 

  45. C.B. Schroeder, E. Esarey, J. van Tilborg, W.P. Leemans, Phys. Rev. E 69, 016501 (2004)

    Article  ADS  Google Scholar 

  46. J. van Tilborg, C.B. Schroeder, C.V. Filip, C. Toth, C.G.R. Geddes, G. Fubiani, R. Huber, R.A. Kaindl, E. Esarey, W.P. Leemans, Phys. Rev. Lett. 96, 014801 (2006)

    Article  ADS  Google Scholar 

  47. R. Lehe, M. Kirchen, I.A. Andriyash, B.B. Godfrey, J.L. Vay, Comput. Phys. Commun. 203, 66 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  48. S.G. Bezhanov, S.A. Uryupin, J. Opt. Soc. Am. B 34, 2593 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Department of Science and Technology and Russian Foundation for Basic Research under DST-RFBR joint proposal (Grant No. INT/RUS/RFBR/394 and 19-52-45035-Ind-a), the Institution of Eminence (IoE), University of Delhi under Faculty Research Programme Grant (Ref. No./IoE/2021/12/FRP), CSIR, Government of India (File No. 09/045(1510)2017-EMR-I), and NRF of Korea (Grant Nos. 2017R13A2B010765 and 2017M1A7A1A03072766).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Gupta.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest. The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, D.N., Jain, A., Kulagin, V.V. et al. Coherent terahertz radiation generation by a flattened Gaussian laser beam at a plasma–vacuum interface. Appl. Phys. B 128, 50 (2022). https://doi.org/10.1007/s00340-022-07777-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07777-z

Navigation