Skip to main content
Log in

Broadband terahertz light source pumped by a 1 μm picosecond laser

  • Rapid Communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We obtained a frequency tunable, low-coherence, picosecond, terahertz (THz) output with a high repetition rate from a picosecond Nd:YVO4 bounce laser in combination with tandem periodically poled stoichiometric lithium tantalate and 4′-dimethylamino-N-methyl-4-stilbazolium tosylate crystals. The frequency of the THz output was tunable in the range 2.1–7.1 THz with a linewidth of ~3.5 THz at 2.2 THz. The THz output had a maximum peak power of ~180 mW and an average power of ~0.65 μW at 3.9 THz. This system has the potential to realize ultra-high speed, THz coherence tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. M. Tani, S. Matsuura, K. Sakai, S. Nakashima, Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. Appl. Opt. 36, 7853–7859 (1997)

    Article  ADS  Google Scholar 

  2. Q. Chen, M. Tani, Z. Jinag, X.C. Zhang, Electro-optic transceivers for terahertz-wave applications. J. Opt. Soc. Am. B 18, 823–831 (2001)

    Article  ADS  MATH  Google Scholar 

  3. K. Liu, J. Xu, X.C. Zhang, GaSe crystals for broadband terahertz wave detection. Appl. Phys. Lett. 85, 863–865 (2004)

    Article  ADS  Google Scholar 

  4. K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, H. Ito, Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate. Opt. Lett. 25, 1714–1716 (2000)

    Article  ADS  Google Scholar 

  5. K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, H. Ito, Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal. Opt. Lett. 33, 252–254 (2008)

    Article  ADS  Google Scholar 

  6. M. Hishida, K. Tanaka, Long-range hydration effect of lipid membrane studied by terahertz time-domain spectroscopy. Phys. Rev. Lett. 106, 158102 (2011)

    Article  ADS  Google Scholar 

  7. F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, K. Tanaka, Real-time terahertz near-field microscope. Opt. Express 19, 8277–8284 (2011)

    Article  ADS  Google Scholar 

  8. B.B. Hu, M.C. Nuss, Imaging with terahertz waves. Opt. Lett. 20, 1716–1718 (1995)

    Article  ADS  Google Scholar 

  9. B. Ferguson, X.C. Zhang, Materials for terahertz science and technology. Nat. Mater. 1, 26–33 (2002)

    Article  ADS  Google Scholar 

  10. A.G. Markez, A. Roitberg, E.J. Heilweil, Pulsed terahertz spectroscopy of DNA, bovine serum albumin (BSA) and collagen between 0.1 and 2.0 terahertz. Chem. Phys. Lett. 320, 42–48 (2000)

    Article  ADS  Google Scholar 

  11. H.T. Chen, J.F. O’Hara, A.K. Azad, A.J. Taylor, R.D. Averitt, D.B. Shrekenhamer, W.J. Padilla, Experimental demonstration of frequency-agile terahertz metamaterials. Nat. Photonics 2, 295–298 (2008)

    Article  Google Scholar 

  12. S. Zhang, Y.S. Park, J. Li, X. Lu, W. Zhang, X. Zhang, Negative refractive index in chiral metamaterials. Phys. Rev. Lett. 102, 023901 (2009)

    Article  ADS  Google Scholar 

  13. S. Ohno, A. Hamano, K. Miyamoto, C. Suzuki, H. Ito, Surface mapping of carrier density in a GaN wafer using a frequency-agile THz source. J. Eur. Opt. Soc. Rapid Publ. 4, 09012 (2009)

    Article  Google Scholar 

  14. S. Ohno, K. Miyamoto, H. Minamide, H. Ito, New method to determine the refractive index and the absorption coefficient of organic nonlinear crystals in the ultra-wideband THz region, Opt. Express 18, 17306–17312 (2010). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-16-17306

  15. K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, Nondestructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11, 2549–2554 (2003)

    Article  ADS  Google Scholar 

  16. A.R. Sanchez, X.C. Zhang, Terahertz science and technology trends. IEEE J. Sel. Top. Quantum Electron. 14, 260–269 (2008)

    Article  Google Scholar 

  17. D.M. Mittleman, R.H. Jacobsen, M.G. Nuss, T-ray imaging. IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996)

    Article  Google Scholar 

  18. D.M. Mittleman, S. Hunshe, L. Boivin, M.G. Nuss, T-ray tomography. Opt. Lett. 22, 904–906 (1997)

    Article  ADS  Google Scholar 

  19. S. Wang, X.C. Zhang, Pulsed terahertz tomography. J. Phys. D: Appl. Phys. 37, R1–R36 (2004)

    Article  ADS  Google Scholar 

  20. A.J. Fitzgerald, B.E. Cole, P.F. Taday, Nondestructive analysis of tablet coating thickness using terahertz pulsed imaging. J. Pharm. Sci. 94, 177–183 (2005)

    Article  Google Scholar 

  21. T. Yasui, T. Yasuda, K. Sawanaka, T. Araki, Terahertz paint meter for noncontact monitoring of thickness and drying progress in a paint film. Appl. Opt. 44, 6849–6856 (2005)

    Article  ADS  Google Scholar 

  22. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254, 1178 (1991)

    Article  ADS  Google Scholar 

  23. F. Miyamaru, T. Yonera, M. Tani, M. Hangyo, Terahertz two-dimensional electrooptic sampling using high speed complementary metal-oxide semiconductor camera. Jpn. J. Appl. Phys. 43, L489–L491 (2004)

    Article  ADS  Google Scholar 

  24. J. Hebling, K.L. Yeh, M.C. Hoffmann, K.A. Nelson, “High-Power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy”. IEEE J. Sel. Top. Quantum Electron. 14, 345–353 (2008)

    Article  Google Scholar 

  25. K. Nawata, Y. Ojima, M. Okida, T. Ogawa, T. Omatsu, “Power scaling of a pico-second Nd:YVO4 masteroscillator power amplifier with a phase-conjugate mirror,” Opt. Express 14, 10657–10662 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-22-10657

  26. T. Omatsu, K. Nawata, M. Okida, K. Furuki, “MW ps pulse generation at sub-MHz repetition rates from a phase conjugate Nd:YVO4 bounce amplifier,” Opt. Express 15, 9123–9128 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-21-16382

  27. K. Nawata, M. Okida, K. Furuki, K. Miyamoto, T. Omatsu, “Sub-100 W picosecound output from a phaseconjugate Nd:YVO4 bounce amplifier,” Opt. Express 17, 20816–20823 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-23-20816

  28. M. Koichi, K. Miyamoto, S. Ujita, T. Saito, H. Ito, T. Omatsu, Dual-frequency picosecond optical parametric generator pumped by a Nd-doped vanadate bounce laser. Opt. Express 19, 18523–18528 (2011)

    Article  Google Scholar 

  29. H. Nakanishi, H. Matsuda, S. Okada, M. Kato, Organic polymeric ion-complexes for nonlinear optics. MRS Int. meet. adv. mat. proc. 1, 97 (1989)

    Google Scholar 

  30. U. Meier, M. Bösch, C. Bosshard, F. Pan, P. Günter, Parametric interactions in the organic salt 4-NNdimethylamino-4′-N′- methyl-stilbazolium tosylate at telecommunication wavelengths. J. Appl. Phys. 83, 3486–3489 (1998)

    Article  ADS  Google Scholar 

  31. A. Bruner, D. Eger, M.B. Oron, P. Blau, M. Katz, S. Ruschin, Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate. Opt. Lett. 28, 194–196 (2003)

    Article  ADS  Google Scholar 

  32. P.E. Powers, Fundamentals of nonlinear optics, 4.4th edn. (CRC Press, USA, 2011)

    MATH  Google Scholar 

  33. T. Ikari, R. Guo, H. Minamide, H. Ito, Enhancement of output energy and efficiency for a Terahertz-wave parametric oscillator using a surface-emitted configuration. Rev. Laser Eng. 37, 370–373 (2009)

    Google Scholar 

  34. M.A. Choma, M.V. Sarunic, C. Yang, J.A. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11, 2183–2189 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Dr. H. Ito of RIKEN for his valuable assistance with the DAST crystal and Dr. Seigo Ohno of Tohoku University for fruitful discussions and suggestions. The authors are also funded by Industry-Academia Collaborative R&D from Japan Science and Technology Agency, JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiko Miyamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyamoto, K., Lee, A., Saito, T. et al. Broadband terahertz light source pumped by a 1 μm picosecond laser. Appl. Phys. B 110, 321–326 (2013). https://doi.org/10.1007/s00340-013-5359-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5359-8

Keywords

Navigation