Skip to main content
Log in

On the performance of wavelength meters: Part 1—consequences for medium-to-high-resolution laser spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Present-day laser-spectroscopy experiments increasingly rely on modern commercial devices to monitor, stabilize, and scan the wavelength of their probe laser. Recently, new techniques are capable of achieving unprecedented levels of precision on atomic and nuclear observables, pushing these devices to their performance limits. Considering the fact that these observables themselves are deduced from the frequency difference between specific atomic resonances, in the order of MHz–GHz, the uncertainty on the output of the device measuring the wavelength is often directly related to the final systematic uncertainty on the experimental results. Owing to its importance, the performance of several commercial wavelength meters was compared against different reference sources, including a Scanning Fabry–Pérot Interferometer (SFPI) and a frequency comb. Reproducible, wavelength- and device-dependent disagreements are observed, potentially skewing the experimental output at high precision. In this paper, a practical and relatively inexpensive wavelength meter characterization procedure is presented and validated. This method is capable of improving the precision on wavelength differences considerably depending on the device, while together with a second investigation that is published separately, (König et al., in Appl Phys B, 2020), it offers a full description of the expected wavelength meter performance for users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. König, P. Imgram, J. Krämer, B. \(\text{Maa}\beta\), K. Mohr, T. Ratajczyk, F. Sommer, W. Nörtershäuser, On the performance of wavelength meters \(--\) Part 2: frequency-comb based characterization revealing their relative limitations and offering opportunities for more accurate absolute wavelength determinations. Appl. Phys. B (2020). https://doi.org/10.1007/s00340-020-07433-4

  2. B. Sanguinetti, H.O. Majeed, M.L. Jones, B.T. Varcoe, J. Phys. B At. Mol. Opt. Phys. 42, 165004 (2009). https://doi.org/10.1088/0953-4075/42/16/165004

    Article  ADS  Google Scholar 

  3. K. Saleh, J. Millo, A. Didier, Y. Kersalé, C. Lacroûte, Appl. Opt. 54, 9446 (2015). https://doi.org/10.1364/ao.54.009446

    Article  ADS  Google Scholar 

  4. L. Couturier, I. Nosske, F. Hu, C. Tan, C. Qiao, Y.H. Jiang, P. Chen, M. Weidemüller, Rev. Sci. Instrum. 89, 043103 (2018). https://doi.org/10.1063/1.5025537

    Article  ADS  Google Scholar 

  5. L.A. Johnson, H.O. Majeed, B. Sanguinetti, T. Becker, B.T. Varcoe, New J. Phys. 12, 063028 (2010). https://doi.org/10.1088/1367-2630/12/6/063028

    Article  ADS  Google Scholar 

  6. A. Koszorus, Precision measurements of the charge radii of potassium isotopes. Phys. Rev. C 100, 034304 (2019)

    Article  ADS  Google Scholar 

  7. K. Blaum, J. Dilling, W. Nörtershäuser, Phys. Scr. T 152, 014017 (2013)

    Article  ADS  Google Scholar 

  8. P. Campbell, I.D. Moore, M. Pearson, Prog. Part. Nucl. Phys. 86, 127–180 (2016)

    Article  ADS  Google Scholar 

  9. V.N. Fedosseev, Y. Kudryavtsev, V.I. Mishin, Phys. Scr. 85, 058104 (2012). https://doi.org/10.1088/0031-8949/85/05/058104

    Article  ADS  Google Scholar 

  10. B.A. Marsh, T.D. Goodacre, S. Sels, Y. Tsunoda, B. Andel, A.N. Andreyev, N.A. Althubiti, D. Atanasov, A.E. Barzakh, J. Billowes, K. Blaum, T.E. Cocolios, J.G. Cubiss, J. Dobaczewski, G.J. Farooq-Smith, D.V. Fedorov, V.N. Fedosseev, K.T. Flanagan, L.P. Gaffney, L. Ghys, M. Huyse, S. Kreim, D. Lunney, K.M. Lynch, V. Manea, Y.M. Palenzuela, P.L. Molkanov, T. Otsuka, A. Pastore, M. Rosenbusch, R.E. Rossel, S. Rothe, L. Schweikhard, M.D. Seliverstov, P. Spagnoletti, C. Van Beveren, P. Van Duppen, M. Veinhard, E. Verstraelen, A. Welker, K. Wendt, F. Wienholtz, R.N. Wolf, A. Zadvornaya, K. Zuber, Nat. Phys. 14, 1163 (2018). https://doi.org/10.1038/s41567-018-0292-8

    Article  Google Scholar 

  11. R. Ferrer, A. Barzakh, B. Bastin, R. Beerwerth, M. Block, P. Creemers, H. Grawe, R. de Groote, P. Delahaye, X. Fléchard, S. Franchoo, S. Fritzsche, L.P. Gaffney, L. Ghys, W. Gins, C. Granados, R. Heinke, L. Hijazi, M. Huyse, T. Kron, Y. Kudryavtsev, M. Laatiaoui, N. Lecesne, M. Loiselet, F. Lutton, I.D. Moore, Y. Martínez, E. Mogilevskiy, P. Naubereit, J. Piot, S. Raeder, S. Rothe, H. Savajols, S. Sels, V. Sonnenschein, J.C. Thomas, E. Traykov, C. Van Beveren, P. Van den Bergh, P. Van Duppen, K. Wendt, A. Zadvornaya, Nat. Commun. 8, 14520 (2017). https://doi.org/10.1038/ncomms14520

    Article  ADS  Google Scholar 

  12. S. Raeder, T. Kron, R. Heinke, J.L. Henares, N. Lecesne, P. Schönberg, M. Trümper, K. Wendt, Hyperfine Interact. 238, 15 (2017). https://doi.org/10.1007/s10751-016-1389-z

    Article  ADS  Google Scholar 

  13. R. Neugart, J. Billowes, M. Bissell, K. Blaum, B. Cheal, K. Flanagan, G. Neyens, W. Nörtershäuser, D.T. Yordanov, J. Phys. G 44, 064002 (2017)

    Article  ADS  Google Scholar 

  14. Y. Kudryavtsev, R. Ferrer, M. Huyse, P. Van den Bergh, P. Van Duppen, Nucl. Instrum. Methods B 297, 7 (2013). https://doi.org/10.1016/j.nimb.2012.12.008

    Article  ADS  Google Scholar 

  15. K. Dockx, T.E. Cocolios, R. Ferrer, C. Granados, S. Kraemer, Y. Kudryavtsev, S. Sels, P. Van den Bergh, P. Van Duppen, M. Verlinde, E. Verstraelen, A. Zadvornaya, Nucl. Instrum. Methods B 463, 297 (2020). https://doi.org/10.1016/j.nimb.2019.04.082

    Article  ADS  Google Scholar 

  16. S. Rothe, B.A. Marsh, C. Mattolat, V.N. Fedosseev, K. Wendt, J. Phys. Conf. Ser. 312, 052020 (2011)

    Article  Google Scholar 

  17. S. Raeder, S. Fies, H. Tomita, K.D.A. Wendt, T. Iguchi, K. Watanabe, in booktitle AIP Conference Proceedings (publisher AIP, 6–10 October 2008). p. 96–101

  18. H. Tomita, C. Mattolat, T. Kessler, S. Raeder, F. Schwellnus, K.D.A. Wendt, K. Watanabe, T. Iguichi, J. Nucl. Sci. Technol. 45, 37 (2008)

    Article  Google Scholar 

  19. V. Sonnenschein, S. Raeder, A. Hakimi, I.D. Moore, K. Wendt, J. Phys. B 45, 165005 (2012)

    Article  ADS  Google Scholar 

  20. A. Hakimi, T. Fischbach, S. Raeder, N. Trautmann, K. Wendt, Hyperfine Interact. 216, 59 (2013)

    Article  ADS  Google Scholar 

  21. R. Heinke, T. Kron, S. Raeder, T. Reich, P. Schönberg, M. Trümper, C. Weichhold, K. Wendt, Hyperfine Interact. 238, 127 (2017)

    Article  Google Scholar 

  22. T. Kessler, H. Tomita, C. Mattolat, S. Raeder, K. Wendt, Laser Phys. 18, 842 (2008)

    Article  ADS  Google Scholar 

  23. V. Sonnenschein, I.D. Moore, S. Raeder, M. Reponen, H. Tomita, K. Wendt, Laser Phys. 27, 085701 (2017)

    Article  ADS  Google Scholar 

  24. W. Zhao, J. Simsarian, L. Orozco, G. Sprouse, Rev. Sci. Instrum. 69, 3737 (1998)

    Article  ADS  Google Scholar 

  25. D. Studer, J. Ulrich, S. Braccini, T.S. Carzaniga, R. Dressler, K. Eberhardt, R. Heinke, U. Köster, S. Raeder, K. Wendt, Eur. Phys. J. A 56, 69 (2020). https://doi.org/10.1140/epja/s10050-020-00061-8

    Article  ADS  Google Scholar 

  26. J. Krämer, K. König, C. Geppert, P. Imgram, B. Maaß, J. Meisner, E. Otten, S. Passon, T. Ratajczyk, J. Ullmann, W. Nörtershäuser, Metrologia 55, 268 (2018)

    Article  ADS  Google Scholar 

  27. P. Imgram, K. König, J. Krämer, T. Ratajczyk, R. Müller, A. Surzhykov, W. Nörtershäuser, Phys. Rev. A 99, 012511 (2019)

    Article  ADS  Google Scholar 

  28. I. Moore, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen, A. Kankainen, V. Kolhinen, J. Koponen, H. Penttilß, I. Pohjalainen, M. Reponen, J. Rissanen, A. Saastamoinen, S. Rinta-Antila, V. Sonnenschein, and J. Äystö, Nucl. Instrum. Methods B 317, 208 (2013). xVIth International Conference on ElectroMagnetic Isotope Separators and Techniques Related to their Applications, December 2–7, 2012 at Matsue, Japan. https://doi.org/10.1016/j.nimb.2013.06.036

  29. R. de Groote, A. de Roubin, P. Campbell, B. Cheal, C. Devlin, T. Eronen, S. Geldhof, I. Moore, M. Reponen, S. Rinta-Antila, M. Schuh, Nucl. Instrum. Methods B 463, 437 (2019)

    Article  Google Scholar 

  30. B. Cheal, M. Gardner, M. Avgoulea, J. Billowes, M. Bissell, P. Campbell, T. Eronen, K. Flanagan, D. Forest, J. Huikari, A. Jokinen, B. Marsh, I. Moore, A. Nieminen, H. Penttilä, S. Rinta-Antila, B. Tordoff, G. Tungate, J. Äystö, Phys. Lett. B 645, 133 (2007). https://doi.org/10.1016/j.physletb.2006.12.053

    Article  ADS  Google Scholar 

  31. A. Zadvornaya, P. Creemers, K. Dockx, R. Ferrer, L.P. Gaffney, W. Gins, C. Granados, M. Huyse, Y. Kudryavtsev, M. Laatiaoui, E. Mogilevskiy, S. Raeder, S. Sels, P. Van Den Bergh, P. Van Duppen, M. Verlinde, E. Verstraelen, M. Nabuurs, D. Reynaerts, P. Papadakis, Phys. Rev. X 8, 41008 (2018). https://doi.org/10.1103/PhysRevX.8.041008

    Article  Google Scholar 

  32. R.P. De Groote, M. Verlinde, V. Sonnenschein, K.T. Flanagan, I. Moore, G. Neyens, Phys. Rev. A 95, 1 (2017). https://doi.org/10.1103/PhysRevA.95.032502

    Article  Google Scholar 

  33. W. Gins, R.P. de Groote, M.L. Bissell, C.G. Buitrago, R. Ferrer, K.M. Lynch, G. Neyens, S. Sels, Comput. Phys. Commun. 222, 286 (2018). https://doi.org/10.1016/j.cpc.2017.09.012

    Article  ADS  Google Scholar 

  34. P. Vingerhoets, Nuclear structure of Cu isotopes studied with collinear laser spectroscopy, Ph.D. thesis, school KU Leuven (2011)

  35. G. Hermann, G. Lasnitschka, C. Schwabe, D. Spengler, Spectrochim. Acta Part B 48B, 1259 (1993). https://doi.org/10.1016/0584-8547(93)80110-G

    Article  ADS  Google Scholar 

  36. H. Figger, D. Schmitt, S. Penselin, Colloq. Int. C.N.R.S 164, 355 (1967)

    Google Scholar 

  37. H. Bucka, J. Ney, P. Wirtnik, Zeitschrift für Physik 202, 22 (1967)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has received funding from Research Foundation Flanders (FWO, Belgium), from the Excellence of Science program (EOS, FWO-FNRS, Belgium), by GOA/2015/010 and STG/15/031 (BOF KU Leuven), by the Interuniversity Attraction Poles Program initiated by the Belgian Science Policy Office (BriX network P7/12), from the European Union’s Horizon 2020 research and innovation program under Grants Agreement no. 654002 (ENSAR2), from the European Research Council under the European Union’s Seventh Framework Program (ERC-2011-AdG-291561-HELIOS), from the German Federal Ministry of Educations and Research (BMBF) under contracts 05P19RDFN1 and 05P18RFCIA, and from the German Research Foundation (DFG) under contract DU 1134/1-2. M.V. is supported by an FWO grant (Aspirant-1121820N). A significant share of the research work described herein originates from R&D carried out in the frame of the FAIR Phase-0 program of LASPEC/NUSTAR. The authors would like to thank both F. Karlewski (HighFinesse) for his efforts and the fruitful discussions and P. Imgram (TU Darmstadt) for his support with the transfer cavity setup at JYFL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Verlinde.

Additional information

Publisher's Note

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verlinde, M., Dockx, K., Geldhof, S. et al. On the performance of wavelength meters: Part 1—consequences for medium-to-high-resolution laser spectroscopy. Appl. Phys. B 126, 85 (2020). https://doi.org/10.1007/s00340-020-07425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07425-4

Navigation