Skip to main content
Log in

High resolution spectroscopy of the hyperfine structure splitting in 97,99Tc

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Resonance ionization mass spectrometry is an efficient tool for detecting trace amounts of long-lived radio-isotopes in environmental samples. For absolute quantification a tracer with identical atomic properties and chemical behavior is needed to prevent a possible dependency onto the absolute efficiency for the analytical method. For an application in 99Tc, the isotope 97Tc could serve as a potential tracer. Therefore the optical transitions of an efficient ionization scheme for technetium were investigated for the two odd mass isotopes 97,99Tc, both with a nuclear spin of I=\(\frac {9}{2}\). Using a pulsed, single mode laser with narrow bandwidth, the hyperfine structures (HFS) of two transitions were fully resolved. The observed isotope shift is small in comparison to the width of the hyperfine structure splitting. This is ideal for the application of 97Tc as tracer isotope for 99Tc quantification. The evaluation of the observed HFS splitting results in a first experimental value for the magnetic dipole for 97Tc of μ=+5.82(9) μ N .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schwochau, K.: Technetium: Chemistry and Radiopharmaceutical Applications. Wiley-VCH Verlag GmbH. doi:10.1002/9783527613366 (2007)

  2. Shi, K., Hou, X., Roos, P., Wu, W.: Determination of technetium-99 in environmental samples: A review. Analytica Chimica Acta 709, 1–20 (2012). doi:10.1016/j.aca.2011.10.020

    Article  Google Scholar 

  3. Trautmann, N.: Ultratrace analysis of technetium. Radiochimica Acta. 63(s1), 37–44 (1993). doi:10.1524/ract.1993.63.special-issue.37

    Article  Google Scholar 

  4. Wendt, K., Geppert, C., Mattolat, C., Passler, G., Raeder, S., Schwellnus, F., Wies, K., Trautmann, N.: Progress of ultra trace determination of technetium using laser resonance ionization mass spectrometry. Anal. Bioanal. Chem. 404(8), 2173–2176 (2012). doi:10.1007/s00216-012-6309-8

    Article  Google Scholar 

  5. Wendlandt, D., Bauche, J., Luc, P.: Hyperfine structure in Tc I: experiment and theory. J. Phys. B 10(10), 1989 (1977). doi:10.1088/0022-3700/10/10/028

    Article  ADS  Google Scholar 

  6. Stone, N.: Table of nuclear magnetic dipole and electric quadrupole moments. At. Data Nucl. Data Tables 90(1), 75–176 (2005). doi:10.1016/j.adt.2005.04.001

    Article  ADS  Google Scholar 

  7. de Groote, R. P., Kron, T., Hakimi, A., Neyens, G., Wendt, K.: Double-resonance-ionization mapping of the hyperfine structure of the stable cu isotopes using pulsed narrowband ti:sapphire lasers. Phys. Rev. A 92, 022,506 (2015). doi:10.1103/PhysRevA.92.022506

  8. Kessler, T., Tomita, H., Mattolat, C., Raeder, S., Wendt, K.: An injection-seeded high-repetition rate Ti: Sapphire laser for high-resolution spectroscopy and trace analysis of rare isotopes. Laser Phys. 18 (7), 842–849 (2008). doi:10.1134/S1054660X08070074

    Article  ADS  Google Scholar 

  9. Mattolat, C., Rothe, S., Schwellnus, F., Gottwald, T., Raeder, S., Wendt, K.: An all-solid-state high repetiton rate titanium:sapphire laser system for resonance ionization laser ion sources. AIP Conf. Proc. Ser. 1104, 114–119 (2009). doi:10.1063/1.3115586

    Article  ADS  Google Scholar 

  10. Sonnenschein, V., Moore, I. D., Khan, H., Pohjalainen, I., Reponen, M.: Characterization of a dual-etalon ti:sapphire laser via resonance ionization spectroscopy of stable copper isotopes. Hyperfine Interactions 227(1), 113–123 (2014). doi:10.1007/s10751-013-1000-9

    Article  ADS  Google Scholar 

  11. Sonnenschein, V., Moore, I. D., Pohjalainen, I., Reponen, M., Rothe, S., Wendt, K.: Intracavity frequency doubling and difference frequency mixing for pulsed ns ti: Sapphire laser systems at on-line radioactive ion beam facilities, vol. 1. doi:10.7566/JPSCP.6.030126 (2015)

  12. Raeder, S., Hakimi, A., Stöbener, N., Trautmann, N., Wendt, K.: Detection of plutonium isotopes at lowest quantities using in-source resonance ionization mass spectrometry. Anal. Bioanal. Chem. 404(8), 2163–2172 (2012). doi:10.1007/s00216-012-6238-6

    Article  Google Scholar 

  13. Roßnagel, J., Raeder, S., Hakimi, A., Ferrer, R., Trautmann, N., Wendt, K.: Determination of the first ionization potential of actinium. Phys. Rev. A 85(1), 012,525 (2012). doi:10.1103/PhysRevA.85.012525

    Article  Google Scholar 

  14. Mattolat, C., Gottwald, T., Raeder, S., Rothe, S., Schwellnus, F., Wendt, K., Thörle-Pospiech, P., Trautmann, N.: Determination of the first ionization potential of technetium. Phys. Rev. A 81(5), 052,513 (2010). doi:10.1103/PhysRevA.81.052513

    Article  Google Scholar 

  15. Kramida, A., Ralchenko, Y., Reader, J., NIST ASD Team: Nist atomic spectra database (version 5.0). Online (2012). Available at http://physics.nist.gov/asd, accessed 01.10.2016

  16. Palmeri, P., Wyart, J. F.: Interpretation of energy levels and predicted transition pobabilities in neutral technetium (Tc I). J. Quant. Spectrosc. Radiat. Transfer 61(5), 603–616 (1999). doi:10.1016/S0022-4073(98)00048-X

    Article  ADS  Google Scholar 

  17. Walchli, H., Livingston, R., Martin, W. J.: The nuclear magnetic moment of Tc99. Phys. Rev. 85, 479–479 (1952). doi:10.1103/PhysRev.85.479

    Article  ADS  Google Scholar 

  18. Fink, D., Richter, S., Blaum, K., Catherall, R., Crepieux, B., Fedosseev, V., Gottberg, A., Kron, T., Marsh, B., Mattolat, C., Raeder, S., Rossel, R., Rothe, S., Schwellnus, F., Seliverstov, M., Sjdin, M., Stora, T., Suominen, P., Wendt, K.: On-line implementation and first operation of the laser ion source and trap at isolde/cern. Nucl. Instrum. Meth. Phys. Res. B 344(0), 83–95 (2015). doi:10.1016/j.nimb.2014.12.007

    Article  ADS  Google Scholar 

  19. Raeder, S., Heggen, H., Lassen, J., Ames, F., Bishop, D., Bricault, P., Kunz, P., Mjøs, A., Teigelhöfer, A.: An ion guide laser ion source for isobar-suppressed rare isotope beams. Rev. Sci. Instr. 85, 033,309 (2014). doi:10.1063/1.4868496

    Article  Google Scholar 

  20. Heinke, R., Kron, T., Trümper, M., Weichhold, C., Wendt, K., Reich, T., Schönberg, P., Raeder, S.: High-resolution in-source laser spectroscopy in perpendicular geometry: Development and application of the pi-list setup. Hyperfine Interactions this issue (2016). doi:10.1007/s10751-016-1386-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Raeder.

Additional information

This article is part of the Topical Collection on Proceedings of the 10th International Workshop on Application of Lasers and Storage Devices in Atomic Nuclei Research: “Recent Achievements and Future Prospects” (LASER 2016), Poznań, Poland, 16–19 May 2016

Edited by Krassimira Marinova, Magdalena Kowalska and Zdzislaw Błaszczak

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raeder, S., Kron, T., Heinke, R. et al. High resolution spectroscopy of the hyperfine structure splitting in 97,99Tc. Hyperfine Interact 238, 15 (2017). https://doi.org/10.1007/s10751-016-1389-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-016-1389-z

Keywords

Navigation