Skip to main content
Log in

Tunable electromagnetically induced transparency in graphene metamaterial in two perpendicular polarization directions

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, a novel structure with coupling hybrid graphene metamaterial, which can achieve a tunable EIT (electromagnetically induced transparency)-like effect in two perpendicular polarization directions is proposed. The structure is comprised of a vertical graphene strip and a pair of H-shape graphene strips, and the H-shape strips are placed alternately on both sides of vertical graphene strip. The EIT-like effects of the proposed structure are simulated and demonstrated using finite-difference time-domain method. The simulation results show that the proposed analogue can achieve dynamically tunable EIT-like effects not by re-fabricating the size of structure but by changing the Fermi level of graphene, furthermore, the above EIT-like effects can be realized in two perpendicular polarization directions. In addition, the mechanism of EIT-like effects and the impact of relaxation time on transparency windows are also demonstrated and analyzed. This work demonstrates a novel EIT-like phenomenon based on metamaterial and opens a new perspective in EIT effect applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.J. Boller, A. Imamoğlu, S.E. Harris, Phys. Rev. Lett. 66, 2593–2596 (1991)

    Article  ADS  Google Scholar 

  2. N. Papasimakis, Y.H. Fu, V. Fedotov, S.L. Prosvirnin, D.P. Tsai, N.I. Zheludev, Appl. Phys. Lett. 94, 211902 (2009)

    Article  ADS  Google Scholar 

  3. D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, M.D. Lukin, Phys. Rev. Lett. 86, 783 (2001)

    Article  ADS  Google Scholar 

  4. S. Zhang, D.A. Genov, Y. Wang, M. Liu, X. Zhang, Phys. Rev. Lett. 101, 047401 (2008)

    Article  ADS  Google Scholar 

  5. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, C.M. Soukoulis, Phys. Rev. Lett. 109, 187401 (2012)

    Article  ADS  Google Scholar 

  6. L. Wang, W. Cai, X. Zhang, P. Liu, Y. Xiang, J. Xu, Appl. Phys. Lett. 103, 041604 (2013)

    Article  ADS  Google Scholar 

  7. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, W. Zhang, Appl. Phys. Lett. 105, 171101 (2014)

    Article  ADS  Google Scholar 

  8. L. Zhu, F.Y. Meng, L. Dong, J.H. Fu, F. Zhang, Q. Wu, Opt. Express 21, 32099–32110 (2013)

    Article  ADS  Google Scholar 

  9. L. Zhu, F.Y. Meng, J.H. Fu, Q. Wu, J. Hua, Opt. Express 20, 4494–4502 (2012)

    Article  ADS  Google Scholar 

  10. V. Kravtsov, J.M. Atkin, M.B. Raschke, Opt. Lett. 38, 1322–1324 (2013)

    Article  ADS  Google Scholar 

  11. L. Zhu, F.Y. Meng, L. Dong, Q. Wu, B.J. Che, J. Gao, J.H. Fu, K. Zhang, G.H. Yang, J. Appl. Phys. 117, 17D146 (2015)

    Article  Google Scholar 

  12. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A.P. Zhuravel, A.V. Ustinov, S.M. Anlage, C.M. Soukoulis, Phys. Rev. Lett. 107, 04390 (2011)

    Article  Google Scholar 

  13. Y.C. Fan, T. Qiao, F.L. Zhang, Q.H. Fu, J.J. Dong, B.T. Kong, H.Q. Li, Sci. Rep. 7, 40441 (2017)

    Article  ADS  Google Scholar 

  14. Y. Tamayama, T. Nakanishi, M. Kitano, Phys. Rev. B 85, 073102 (2012)

    Article  ADS  Google Scholar 

  15. X.R. Jin, Y. Lu, J. Park, H. Zheng, F. Gao, Y. Lee, J.Y. Rhee, K.W. Kim, H. Cheong, W.H. Jang, J. Appl. Phys. 111, 073101 (2012)

    Article  ADS  Google Scholar 

  16. J.Q. Gu, R. Singh, X.J. Liu, X.Q. Zhang, Y.F. Ma, S. Zhang, S.A. Maier, Z. Tian, A.K. Azad, H.T. Chen, A.J. Taylor, J.G. Han, W.L. Zhang, Nat. Commun. 3, 1151 (2012)

    Article  ADS  Google Scholar 

  17. S.H. Mousavi, A.B. Khanikaev, J. Allen, M. Allen, G. Shvets, Phys. Rev. Lett. 112, 117402 (2014)

    Article  ADS  Google Scholar 

  18. P. Pitchappa, M. Manjappa, C.P. Ho, R. Singh, N. Singh, C.K. Lee, Adv. Opt. Mater. 4, 541–547 (2016)

    Article  Google Scholar 

  19. X.J. He, X.Y. Yang, G.J. Lu, W.L. Yang, F.M. Wu, Z.G. Yu, J.X. Jiang, Carbon 123, 668–675 (2017)

    Article  Google Scholar 

  20. M.Y. Cao, H.F. Wang, L. Li, Phys. Lett. A 382, 1978–1981 (2018)

    Article  ADS  Google Scholar 

  21. C. Shu, Q.G. Chen, J.S. Mei, J.H. Yin, Opt. Commun. 411, 48–52 (2018)

    Article  ADS  Google Scholar 

  22. X.J. He, X.Y. Yang, S.P. Li, S. Shi, F.M. Wu, J.X. Jiang, Opt. Mater. Express 6, 3075–3085 (2016)

    Article  ADS  Google Scholar 

  23. X.L. Zhao, C. Yuan, L. Zhu, J.Q. Yao, Nanoscale 33, 15273 (2016)

    Article  Google Scholar 

  24. G. Yao, F.R. Ling, J. Yue, C.Y. Luo, Q. Luo, J.Q. Yao, IEEE Photon. J. 8, 7800808 (2016)

    Google Scholar 

  25. X.J. He, Y.M. Huang, X.Y. Yang, L. Zhu, F.M. Wu, J.X. Jiang, RSC Adv. 7, 40321–40326 (2017)

    Article  Google Scholar 

  26. C.X. Liu, P.G. Liu, L. Bian, Q.H. Zhou, G.S. Li, H.Q. Liu, Opt. Commun. 410, 17–24 (2018)

    Article  ADS  Google Scholar 

  27. X. Shi, X.P. Su, Y.P. Yang, J. Appl. Phys. 117, 143101 (2015)

    Article  ADS  Google Scholar 

  28. X.J. Shang, X. Zhai, X.F. Li, L.L. Wang, B.X. Wang, G.D. Liu, Plasmonics 11, 419–513 (2016)

    Article  Google Scholar 

  29. Y.Y. Niu, J.C. Wang, Z.D. Hu, F. Zhang, Opt. Commun. 416, 77–83 (2018)

    Article  ADS  Google Scholar 

  30. J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y.K. Lin, H.L. Zhang, Sci. Rep. 4, 6128 (2014)

    Article  ADS  Google Scholar 

  31. Y. Wang, Y.B. Leng, L. Wang, L.H. Dong, S.R. Liu, J. Wang, Y.J. Sun, Appl. Phys. Express. 11, 062001 (2018)

    Article  ADS  Google Scholar 

  32. S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, C. Xu, J. Phys. D Appl. Phys. 50, 195101 (2017)

    Article  ADS  Google Scholar 

  33. S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, C. Xu, Carbon 126, 271–278 (2018)

    Article  Google Scholar 

  34. T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, S. Xiao, J. Phys. D Appl. Phys. 51, 415105 (2018)

    Article  ADS  Google Scholar 

  35. T. Liu, H. Wang, Y. Liu, L. Xiao, Z. Yi, C. Zhou, S. Xiao, Opt. Commun. 426, 629–634 (2018)

    Article  ADS  Google Scholar 

  36. S. Izadshenas, A. Zakery, Z. Vafapour, Plasmonics 13, 63–70 (2018)

    Article  Google Scholar 

  37. T. Kato, R. Hatakeyama, ACS Nano 6, 8508–8515 (2012)

    Article  Google Scholar 

  38. Z.L. Chen, Y. Qi, X.D. Chen, Y.F. Zhang, Z.F. Liu, Adv. Mater. 1803639 (2018)

  39. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Honec, P. Kim, H.L. Stormer, Solid State Commun. 146, 351–355 (2008)

    Article  ADS  Google Scholar 

  40. C. Shu, Q.G. Chen, J.S. Mei, J.H. Yin, Opt. Commun. 420, 65–71 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Shu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, J., Shu, C. & Yang, P. Tunable electromagnetically induced transparency in graphene metamaterial in two perpendicular polarization directions. Appl. Phys. B 125, 130 (2019). https://doi.org/10.1007/s00340-019-7242-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7242-8

Navigation