Skip to main content
Log in

Realization of Graphene-Based Tunable Plasmon-Induced Transparency by the Dipole-Dipole Coupling

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A numerical and theoretical study is presented on the realization of tunable plasmon-induced transparency (PIT) phenomenon in the three-dimensional patterned graphene nanostrips. The simulation results reveal that the PIT effect is generated due to the excitation of dark mode which can be considered a dipole. The three-level plasmonic system is employed to explain the physical mechanism of the PIT effect. Different from previous reported form (dipole-quadrupole coupling), the proposed is attributed to the dipole-dipole coupling. The PIT effect can be tuned by changing the coupling length between bright and dark mode as well as the Fermi energy of graphene. Our studies provide guidance for fabricating ultra-compact devices in practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ates C, Sevincli S, Pohl T (2011) Electromagnetically induced transparency in strongly interacting Rydberg gases. Phys Rev A 83:041802

    Article  Google Scholar 

  2. Kurter C, Tassin P, Zhang L, Koschny T, Zhuravel AP, Ustinov AV, Soukoulis CM (2011) Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial. Phys Rev Lett 107:043901

    Article  Google Scholar 

  3. Rohlsberger R, Wille H, Schlage K, Sahoo B (2012) Electromagnetically induced transparency with resonant nuclei in a cavity. Nature 482:199–203

    Article  Google Scholar 

  4. Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10:1103–1107

    Article  CAS  Google Scholar 

  5. Dong ZG, Liu H, Cao JX, Li T, Wang SM, Zhu SN, Zhang X (2010) Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials. Appl Phys Lett 97:114101

    Article  Google Scholar 

  6. Phillips D, Fleischhauer A, Mair A, Walsworth R, Lukin M (2001) Storage of light in atomic vapor. Phys Rev Lett 86:783–786

    Article  CAS  Google Scholar 

  7. Khanikaev AB, Mousavi SH, Wu C, Dabidian N, Alici KB, Shvets G (2012) Electromagnetically induced polarization conversion. Opt Commun 285:3423–3427

    Article  CAS  Google Scholar 

  8. Chen J, Wang P, Chen C, Lu Y, Ming H, Zhan Q (2011) Plasmonic EIT-like switching in bright-dark-bright plasmon resonators. Opt Express 19:5970–5978

    Article  Google Scholar 

  9. Schmidt H, Ram RJ (2000) All-optical wavelength converter and switch based on electromagnetically induced transparency. Appl Phys Lett 76:3173

    Article  CAS  Google Scholar 

  10. He JN, Wang JQ, Ding P, F CZ, Arnaut LR, Liang EJ (2015) Optical switching based on polarization tunable plasmon-induced transparency in Disk/Rod hybrid metasurfaces. Plasmonics. doi:10.1007/s11468-015-9911-8, online

  11. Yun B, Hu G, Cong J, Cui Y (2014) Plasmon induced transparency in metal insulator metal waveguide by a stub coupled with F-P resonator. Mater Res Express 1:036201

    Article  Google Scholar 

  12. Deng ZL, Dong JW (2013) Lasing in plasmon-induced transparency nanocavity. Opt Express 21:20291–20302

    Article  Google Scholar 

  13. Wang L, Gu Y, Chen H, Zhang JY, Cui Y, Gerardot BD, Gong Q (2013) Polarized linewidth-controllable double-trapping electromagnetically induced transparency spectra in a resonant plasmon nanocavity. Sci Rep 3:2879

    Google Scholar 

  14. Liu ZZ, Xiao JJ, Zhang Q, Zhang XM, Tao KY (2015) Collective dark states controlled transmission in plasmonic slot waveguide with a stub coupled to a cavity dimer. Plasmonics. doi:10.1007/s11468-015-9901-x, online

    Google Scholar 

  15. Cao GT, Li HJ, Deng Y, Zhan SP, He ZH, Li BX (2014) Plasmon-induced transparency in a single multimode stub resonator. Opt Express 22:25215

    Article  Google Scholar 

  16. Kekatpure RD, Barnard ES, Cai W, Brongersma ML (2010) Phase-coupled plasmon-induced transparency. Phys Rev Lett 104:243902

    Article  Google Scholar 

  17. Wang L, Cai W, Luo WW, Ma ZH, Du CL, Zhang XZ, Xu JJ (2014) Mid-infrared plasmon induced transparency in heterogeneous graphene ribbon pairs. Opt Express 22:32450

    Article  CAS  Google Scholar 

  18. Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101:047401

    Article  Google Scholar 

  19. Zhang Z, Zhang L, Li H, Chen H (2014) Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity. Appl Phys Lett 104:231114

    Article  Google Scholar 

  20. Cheng H, Chen SQ, Yu P, Duan XY, Xie BY, Tian JG (2013) Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips. Appl Phys Lett 103:203112

    Article  Google Scholar 

  21. Liu H, Li B, Zheng L, Xu C, Zhang G, Wu X, Xiang N (2013) Multispectral plasmon induced transparency in triangle and nanorod(s) hybrid nanostructures. Opt Lett 38:977–979

    Article  Google Scholar 

  22. Christensen J, Manjavacas A, Thongrattanasiri S, Koppens FH, de Abajo FJG (2012) Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6:431–440

    Article  CAS  Google Scholar 

  23. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  24. Thongrattanasiri S, Manjavacas A, Javier Garc F (2012) Quantum finite-size effects in graphene plasmons. ACS Nano 6:1766–1775

    Article  CAS  Google Scholar 

  25. Koppens FHL, Chang DE, Garca J, de Abajob F (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11:3370–3377

    Article  CAS  Google Scholar 

  26. Novoselov KS (2013) Electric field effect in atomically thin carbon films. Science 306:666

    Article  Google Scholar 

  27. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  CAS  Google Scholar 

  28. He Z, Li HJ, Zhan SP, Cao GT, Li BX (2014) Combined theoretical analysis for plasmon induced transparency in waveguide systems. Opt Lett 39:5543–5546

    Article  Google Scholar 

  29. Correas-Serrano D, Gomez Diaz JS, Perruisseau-Carrier J, Alvarez-Melcon A (2013) Graphene based plasmonic tunable low pass filters in the THz band. IEEE Trans Nanotechnol 13:1145–1153

    Article  Google Scholar 

  30. Rodrigo D, Limaj O, Janner D, Etezadi D, de Abajo FJG, Pruneri V, Altug H (2015) Mid-infrared plasmonic biosensing with graphene. Science 349:165–168

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos, 61176116, 11074069) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120161130003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-ling Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Xj., Zhai, X., Li, Xf. et al. Realization of Graphene-Based Tunable Plasmon-Induced Transparency by the Dipole-Dipole Coupling. Plasmonics 11, 419–423 (2016). https://doi.org/10.1007/s11468-015-0069-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0069-1

Keywords

Navigation