Skip to main content
Log in

Analysis of controlling methods for femtosecond pulse sequence with terahertz repetition rate

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In modern optical fiber transmission systems, an important aspect is the temporal multiplexing of channels. Guided-wave optical technologies for creating communication lines with a terahertz repetition rate come to the fore. In this paper, the methods of numerical simulation have illustrated the possibility of forming a sequence of subpulses with any duration and with a terahertz repetition rate as well as to control it considering the discrepancy coefficient. This coefficient is related to the discrepancy between the central frequency of subpulses in the quasidiscrete temporal structure and the central frequency of the spectral lines in the quasidiscrete spectral structure. Its influence on the sequence of subpulses after encoding is shown. The results demonstrate the formation of a controlled sequence with a duration of more than 100 ps and a repetition rate of 0.4 THz, which is difficult to achieve by existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Gagliardi, M. Salza, S. Avino, P. Ferraro, P. De Natale, Probing the ultimate limit of fiber-optic strain sensing. Science 330(6007), 1081–1084 (2010)

    Article  ADS  Google Scholar 

  2. E. Hamidi, D.E. Leaird, A.M. Weiner, Tunable programmable microwave photonic filters based on an optical frequency comb. IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010)

    Article  ADS  Google Scholar 

  3. I. Coddington, W.C. Swann, L. Nenadovic, N.R. Newbury, Rapid and precise absolute distance measurements at long range. Nat. Photonics 3(6), 351 (2009)

    Article  ADS  Google Scholar 

  4. P.J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, S. Bhooplapur, Advanced ultrafast technologies based on optical frequency combs. IEEE J. Sel. Top. Quantum Electron. 18(1), 258–274 (2012)

    Article  ADS  Google Scholar 

  5. J. He, F. Long, R. Deng, J. Shi, M. Dai, L. Chen, Flexible multiband ofdm ultra-wideband services based on optical frequency combs. IEEE/OSA J. Opt. Commun. Netw. 9(5), 393–400 (2017)

    Article  Google Scholar 

  6. X. Pang, M. Beltrán, J. Sánchez, E. Pellicer, J.V. Olmos, R. Llorente, I.T. Monroy, Centralized optical-frequency-comb-based RF carrier generator for DWDM fiber-wireless access systems. J. Opt. Commun. Netw. 6(1), 1–7 (2014)

    Article  Google Scholar 

  7. A.N. Tsypkin, S.E. Putilin, A.V. Okishev, S.A. Kozlov, Ultrafast information transfer through optical fiber by means of quasidiscrete spectral supercontinuums. Opt. Eng. 54(5), 056111 (2015)

    Article  ADS  Google Scholar 

  8. J. Kim, Y. Song, Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv. Opt. Photonics 8(3), 465–540 (2016)

    Article  ADS  Google Scholar 

  9. D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff, Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288(5466), 635–639 (2000)

    Article  ADS  Google Scholar 

  10. S.A. Diddams, D.J. Jones, J. Ye, S.T. Cundiff, J.L. Hall, J.K. Ranka, R.S. Windeler, R. Holzwarth, T. Udem, T. Hänsch, Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett. 84(22), 5102 (2000)

    Article  ADS  Google Scholar 

  11. T. Sakamoto, T. Kawanishi, M. Tsuchiya, 10 GHz, 2.4 ps pulse generation using a single-stage dual-drive Mach–Zehnder modulator. Opt. Lett. 33(8), 890–892 (2008)

    Article  ADS  Google Scholar 

  12. R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L.P. Barry, P. Anandarajah, 40 nm wavelength tunable gain-switched optical comb source. Opt. Express 19(26), B415–B420 (2011)

    Article  Google Scholar 

  13. R. Wu, D.E. Leaird, A.M. Weiner et al., Supercontinuum-based 10-GHz flat-topped optical frequency comb generation. Opt. Express 21(5), 6045–6052 (2013)

    Article  ADS  Google Scholar 

  14. C. He, S. Pan, R. Guo, Y. Zhao, M. Pan, Ultraflat optical frequency comb generated based on cascaded polarization modulators. Opt. Lett. 37(18), 3834–3836 (2012)

    Article  ADS  Google Scholar 

  15. I. Demirtzioglou, C. Lacava, K.R. Bottrill, D.J. Thomson, G.T. Reed, D.J. Richardson, P. Petropoulos, Frequency comb generation in a silicon ring resonator modulator. Opt. Express 26(2), 790–796 (2018)

    Article  ADS  Google Scholar 

  16. T.J. Kippenberg, R. Holzwarth, S.A. Diddams, Microresonator-based optical frequency combs. Science 332(6029), 555–559 (2011)

    Article  ADS  Google Scholar 

  17. W. Wang, S.T. Chu, B.E. Little, A. Pasquazi, Y. Wang, L. Wang, W. Zhang, L. Wang, X. Hu, G. Wang et al., Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing. Sci. Rep. 6, 28501 (2016)

    Article  ADS  Google Scholar 

  18. M. Bakhtin, S. Kozlov, Formation of a sequence of ultrashort signals in a collision of pulses consisting of a small number of oscillations of the light field in nonlinear optical media. Opt. Spectrosc. 98(3), 425–430 (2005)

    Article  ADS  Google Scholar 

  19. A. Tcypkin, S. Putilin, Spectral-temporal encoding and decoding of the femtosecond pulses sequences with a THz repetition rate. Appl. Phys. B 123(1), 44 (2017)

    Article  ADS  Google Scholar 

  20. A.M. Weiner, J.P. Heritage, E. Kirschner, High-resolution femtosecond pulse shaping. JOSA B 5(8), 1563–1572 (1988)

    Article  ADS  Google Scholar 

  21. A.M. Weiner, Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71(5), 1929–1960 (2000)

    Article  ADS  Google Scholar 

  22. P.C. Sun, Y.T. Mazurenko, W. Chang, P. Yu, Y. Fainman, All-optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding. Opt. Lett. 20(16), 1728–1730 (1995)

    Article  ADS  Google Scholar 

  23. D.M. Marom, D. Panasenko, P.-C. Sun, Y. Fainman, Spatial-temporal wave mixing for space–time conversion. Opt. Lett. 24(8), 563–565 (1999)

    Article  ADS  Google Scholar 

  24. A.N. Tsypkin, Y.A. Komarova, S.E. Putilin, A.V. Okishev, S.A. Kozlov, Direct measurement of the parameters of a femtosecond pulse train with a THz repetition rate generated by the interference of two phase-modulated femtosecond pulses. Appl. Opt. 54(8), 2113–2117 (2015)

    Article  ADS  Google Scholar 

  25. A. Tsypkin, S. Putilin, S. Kozlov, Formation of a sequence of femtosecond optical pulses with a terahertz repetition rate. Opt. Spectrosc. 114(6), 863–867 (2013)

    Article  ADS  Google Scholar 

  26. G. Li, X. Peng, S. Dai, Y. Wang, M. Xie, L. Yang, C. Yang, W. Wei, P. Zhang, Highly coherent 1.5–8.3 μm broadband supercontinuum generation in tapered As-S chalcogenide fibers. J. Lightwave Technol. 37(9), 1847–1852 (2019)

    Article  ADS  Google Scholar 

  27. N. Belashenkov, A. Drozdov, S. Kozlov, Y.A. Shpolyanskiy, A. Tsypkin, Phase modulation of femtosecond light pulses whose spectra are superbroadened in dielectrics with normal group dispersion. J. Opt. Technol. 75(10), 611–614 (2008)

    Article  Google Scholar 

  28. Y.T. Mazurenko, S. Putilin, A. Spiro, A. Beliaev, V. Yashin, S. Chizhov, Ultrafast time-to-space conversion of phase by the method of spectral nonlinear optics. Opt. Lett. 21(21), 1753–1755 (1996)

    Article  ADS  Google Scholar 

Download references

Funding

Government of the Russian Federation (08-08). National Funding from the FCT–Fundação para a Ciência e Tecnologia (UID/EEA/50008/2009). RNP, with resources from MCTIC, Grant No. 01250.075413/2018-04 under the Centro de Referência em Radiocomunicações–CRR project of the Instituto Nacional de Telecomunicações (Inatel), Brazil. Brazilian National Council for Research and Development (CNPq) (Grant No. 309335/2017-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksim Melnik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnik, M., Tcypkin, A., Putilin, S. et al. Analysis of controlling methods for femtosecond pulse sequence with terahertz repetition rate. Appl. Phys. B 125, 98 (2019). https://doi.org/10.1007/s00340-019-7210-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7210-3

Navigation