Skip to main content
Log in

Laser plasma wakefield acceleration gain enhancement by means of accelerating Bessel pulses

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we propose an approach to enhance the electron energy gain in standard laser-driven plasma wakefield accelerators, using accelerating Bessel pulses with tunable group velocity so to avoid electron dephasing. We use in the numerical simulations a one-dimensional theoretical model in the linear regime, taking advantage of the “diffraction-free” properties of the localized Bessel beam and thus neglecting transverse effects during the acceleration process. With a multistage tailoring approach, we show a gain enhancement of more than 100 with electron energies that may reach the GeV range over distances shorter than 1 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  Google Scholar 

  2. V. Malka, P. Mora, C. R. Phys. 10, 106 (2009)

    Article  ADS  Google Scholar 

  3. E. Esarey, C.B. Schroeder, W.P. Leemans, Rev. Mod. Phys. 81, 1229 (2009). (see references therein)

    Article  ADS  Google Scholar 

  4. F. Amiranoff et al., Plasma Phys. Control Fusion 38, A295 (1996)

    Article  ADS  Google Scholar 

  5. W. Lu et al., Phys. Rev. ST Accel. Beams 10, 061301 (2007)

    Article  ADS  Google Scholar 

  6. M. Litos, Nature 515, 92 (2014)

    Article  ADS  Google Scholar 

  7. W.P. Leemans et al., Nat. Phys. 2, 696 (2006)

    Article  Google Scholar 

  8. C.E. Clayton et al., Phys. Rev. Lett. 105, 105003 (2010)

    Article  ADS  Google Scholar 

  9. H. Lu et al., Appl. Phys. Lett. 99, 091502 (2011)

    Article  ADS  Google Scholar 

  10. X.M. Wang et al., Nat. Commun. 4, 1988 (2013)

    Google Scholar 

  11. H.T. Kim et al., Phys. Rev. Lett. 111, 165002 (2013)

    Article  ADS  Google Scholar 

  12. C.D. Decker, W.B. Mori, Phys. Rev. Lett. 72, 490 (1994)

    Article  ADS  Google Scholar 

  13. M.E. Veysman, N.E. Andreev, J. Phys. Conf. Ser. 774, 012109 (2016)

    Article  Google Scholar 

  14. W.P. Leemans et al., Phys. Rev. Lett. 113, 245002 (2014)

    Article  ADS  Google Scholar 

  15. D.N. Gupta, M.S. Hur, I. Hwang, H. Suk, A.K. Sharma, J. Opt. Soc. Am. B 24, 1155 (2007)

    Article  ADS  Google Scholar 

  16. R. Sadighi-Bonabi, M. Habibi, E. Yazdani, Phys. Plasmas 16, 083105 (2009)

    Article  ADS  Google Scholar 

  17. H. Akoua, M. Asri, Phys. Lett. A 380, 1729 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. V.B. Pathak, J. Vieira, R.A. Fonseca, L.O. Silva, New J. Phys. 14, 023057 (2012)

    Article  ADS  Google Scholar 

  19. E. Guillaume et al., Phys. Rev. Lett. 115, 155002 (2015)

    Article  ADS  Google Scholar 

  20. A. Dopp, E. Guillaume, C. Thaury, A. Lifschitz, K. Ta Phuoc, V. Malka, Phys. Plasmas 23, 056702 (2016)

    Article  ADS  Google Scholar 

  21. S.P.D. Mangles et al., Nature 431, 535 (2004)

    Article  ADS  Google Scholar 

  22. C.G.R. Geddes et al., Nature 431, 538 (2004)

    Article  ADS  Google Scholar 

  23. J. Faure et al., Nature 431, 541 (2004)

    Article  ADS  Google Scholar 

  24. J. Durning, J. Miceli, J.H. Eberly, Phys. Rev. Lett. 58, 1499 (1987)

    Article  ADS  Google Scholar 

  25. D. Macgloin, K. Dholakia, Contemp. Phys. 46, 15 (2005)

    Article  ADS  Google Scholar 

  26. A. Averchi et al., Phys. Rev. A 77, 021802 (2008)

    Article  ADS  Google Scholar 

  27. V. Garces-Chavez et al., Nature 419, 145 (2002)

    Article  ADS  Google Scholar 

  28. M. Duocastella, C.B. Arnold, Laser Photonics Rev. 6, 607 (2012)

    Article  Google Scholar 

  29. L. Gao, Nat. Protoc. 9, 1083 (2014)

    Article  Google Scholar 

  30. M. Clerici et al., Opt. Exp. 16, 19807 (2008)

    Article  ADS  Google Scholar 

  31. A. Popp et al., Phys. Rev. Lett. 105, 215001 (2010)

    Article  ADS  Google Scholar 

  32. J. Osteroff et al., Phys. Rev. Lett. 101, 085002 (2008)

    Article  ADS  Google Scholar 

  33. G.-Z. Sun, E. Ott, Y.C. Lee, P. Guzdar, Phys. Fluids 30, 526 (1987)

    Article  ADS  Google Scholar 

  34. J. Fan, E. Parra, K.Y. Kim, I. Alexeev, H.M. Milchberg, J. Cooley, T.M. Antonsen, Phys. Rev. E 65, 056408 (2002)

    Article  ADS  Google Scholar 

  35. J. Durning, J.J. Miceli, J.H. Eberly, Opt. Lett. 13, 79 (1988)

    Article  ADS  Google Scholar 

  36. B. Hafizi, E. Esarey, P. Sprangle, Phys. Rev. E 55, 3539 (1997)

    Article  ADS  Google Scholar 

  37. D. Li, K. Imasaki, Appl. Phys. Lett. 86, 031110 (2005)

    Article  ADS  Google Scholar 

  38. P. Polesana, M. Franco, A. Couairon, D. Faccio, P. Di Trapani, Phys. Rev. A 77, 043814 (2008)

    Article  ADS  Google Scholar 

  39. P. Polesana, A. Couairon, D. Faccio, A. Parola, M.A. Porras, A. Dubietis, A. Piskarskas, P. Di Trapani, Phys. Rev. Lett. 99, 223902 (2007)

    Article  ADS  Google Scholar 

  40. C. Danson, D. Hillier, N. Hopps, D. Neely, High Power Laser Sci. Eng. 3, e3 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Arnaud Couairon for useful discussions in the initial stage of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Jedrkiewicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Parola, A., Di Trapani, P. et al. Laser plasma wakefield acceleration gain enhancement by means of accelerating Bessel pulses. Appl. Phys. B 123, 185 (2017). https://doi.org/10.1007/s00340-017-6761-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6761-4

Navigation