Skip to main content
Log in

Radial Gaussian-Schell-model array beams in oceanic turbulence

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Based on the extended Huygens–Fresnel principle, the analytical expression for the cross-spectral density (CSD) function of the radial Gaussian-Schell-model array (RGSMA) beams propagating in oceanic turbulence is derived. Then, combined with the spatial power spectrum of oceanic turbulence, analytical formulas for the average intensity and the root-mean-square (rms) beam width of the RGSMA beams propagating in oceanic turbulence are obtained. The changes of the average intensity and the rms beam width with propagation distance z and three oceanic turbulence parameters, including temperature-salinity balance parameter w, mean square temperature dissipation rate \({\chi _{\text{T}}}\), and energy dissipation rate per unit mass \(\varepsilon\), are investigated in detail. The results have certain reference value for the propagation properties of the RGSMA beams in oceanic turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.C. Andrews, R.L. Phillips, Laser beam propagation through random media, (SPIE, Bellingham, 2005)

    Book  Google Scholar 

  2. X. Li, Z. Pu, Appl. Phys. B 93, 915–923 (2008)

    Article  ADS  Google Scholar 

  3. Y. Dan, B. Zhang, Opt. Express 16(20), 15563–15575 (2008)

    Article  ADS  Google Scholar 

  4. Y. Cai, S. He, Appl. Phys. Lett. 89(4), 041117 (2006)

    Article  ADS  Google Scholar 

  5. J. Li, C. Ding, B. Lü, Appl. Phys. B 103(1), 245–255 (2011)

    Article  ADS  Google Scholar 

  6. X. Du, D. Zhao, O. Korotkova, Opt. Express 15(25), 16909–16915 (2007)

    Article  ADS  Google Scholar 

  7. O. Korotkova, E. Shchepakina, J. Opt 16, 045704 (2014)

    Article  ADS  Google Scholar 

  8. Z. Mei, Opt. Express 22(11), 13029–13040 (2014)

    Article  ADS  Google Scholar 

  9. B. Chen, Z. Chen, J. Pu, Opt. Laser Technol. 40, 820–827 (2008)

    Article  ADS  Google Scholar 

  10. L.J. Johnson, R.J. Green, M.S. Leeson, Appl. Opt. 52, 7867–7873 (2013).

    Article  ADS  Google Scholar 

  11. H. Frank, R. Stojan, Appl. Opt. 47(2), 277–283 (2008)

    Article  Google Scholar 

  12. W. Hou, A simple underwater imaging model. Opt. Lett 34(17), 2688–2690 (2009)

    Article  ADS  Google Scholar 

  13. W. Hou, E. Jarosz, S. Woods, W. Goode, A. Weidemann, Opt. Express 21(4), 4367–4375 (2013)

    Article  ADS  Google Scholar 

  14. V. V. Nikishov, V. I. Nikishov, Int. J. Fluid Mech. Res. 27(1), 82–98 (2000)

    Article  MathSciNet  Google Scholar 

  15. M. Tang, D. Zhao, Appl. Phys. B 111(4) 665–670 (2013)

    Article  ADS  Google Scholar 

  16. M. Tang, D. Zhao, Appl. Opt. 54(11), 3407–3411 (2015)

    Article  ADS  Google Scholar 

  17. L. Lu, Z. Wang, J. Zhang, P. Zhang, C. Qiao, C. Fan, X. Ji, Appl. Opt. 54(25), 7500–7507 (2015)

    Article  ADS  Google Scholar 

  18. B.P. Anderson, T.L. Gustavson, M.A. Kasevich, Phys. Rev. A 53(6), R3727–R3730 (1996)

    Article  ADS  Google Scholar 

  19. H.J. Baker, D.R. Hall, A.M. Hornby, R.J. Morley, M.R. Taghizadeh, E.F. Yelden, IEEE J. Quantum Electron. 32(3), 400–407 (1996)

    Article  ADS  Google Scholar 

  20. W.D. Bilida, J.D. Strohschein, H.J.J. Seguin, SPIE 2987, 13–21 (1997)

    ADS  Google Scholar 

  21. Y. Zhu, D. Zhao, X. Du, Opt. Express 16(22), 18437–18442 (2008)

    Article  ADS  Google Scholar 

  22. X. Ji, H.T. Eyyuboğlu, G. Ji, X. Jia, Opt. Express 21(2), 2154–2164 (2013)

    Article  ADS  Google Scholar 

  23. X. Li, X. Ji, H.T. Eyyuboğlu, Y. Baykal, Appl. Phys. B 98(2–3), 557–565 (2010)

    Article  ADS  Google Scholar 

  24. Z. Mei, D. Zhao, O. Korotkova, Y. Mao, Opt. Lett 40(23), 5662–5665 (2015)

    Article  ADS  Google Scholar 

  25. L. Lu, P. Zhang, C. Fan, C. Qiao, Opt. Express 23(3), 2827–2836 (2015)

    Article  ADS  Google Scholar 

  26. Y. Mao, Z. Mei, Opt. Commun 381, 222–226 (2016)

    Article  ADS  Google Scholar 

  27. W. Lu, L. Liu, J. Sun, J. Opt. A Pure Appl. Opt. 8, 1052–1058 (2006)

    Article  ADS  Google Scholar 

  28. N. Farwell, O. Kortkova, Opt. Commun. 285, 872–875 (2012)

    Article  ADS  Google Scholar 

  29. X. Ji, H.T. Eyyuboğlu, Y. Baykal, Opt. Express 18(7), 6922–6928 (2010)

    Article  ADS  Google Scholar 

  30. I.S. Gradysteyn, I.M. Ryzhik, Table of integrals, series and products. (Academic Press, New York, 2007)

    Google Scholar 

Download references

Acknowledgements

The research is supported by the Zhejiang Provincial Natural Science Foundation of China (LY16F050007) and National Natural Science Foundation of China (NSFC) (11247004 and 11647306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangrong Mei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Y., Mei, Z., Gu, J. et al. Radial Gaussian-Schell-model array beams in oceanic turbulence. Appl. Phys. B 123, 111 (2017). https://doi.org/10.1007/s00340-017-6680-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6680-4

Keywords

Navigation