Skip to main content
Log in

Angular spread of Gaussian Schell-model array beams propagating through atmospheric turbulence

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The closed-form expression for the angular spread of Gaussian Schell-model (GSM) array beams propagating through atmospheric turbulence is derived. It is shown that the angular spread θ sp of GSM array beams for the superposition of the cross-spectral density function is smaller than of those for the superposition of the intensity. However, the θ sp of GSM array beams for the superposition of the intensity is less sensitive to turbulence than that for the superposition of the cross-spectral density function. For the superposition of the cross-spectral density function, θ sp of GSM array beams with smaller coherence length σ 0, smaller waist width w 0, smaller beam number N, and larger separation distance x d are less affected by turbulence than of those with larger σ 0,w 0,N, and smaller x d ; while, for the superposition of the intensity, the effect of turbulence on θ sp is independent of N and x d . In addition, the angular spread is nearly the same for the two types of superposition when σ 0 or w 0 is small enough, or x d is large enough. On the other hand, it is found that there exist equivalent GSM array beams for the two types of superposition which may have the same directionality as the corresponding fully coherent Gaussian beam in free space and also in turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Fante, Wave propagation in random media: a systems approach, in Progress in Optics, vol. XXII, ed. by E. Wolf (Elsevier, Amsterdam, 1985). Chap. VI

    Google Scholar 

  2. L.C. Andrews, R.L. Phillips, Laser Beam Propagation through Random Media (SPIE, Amsterdam, 1998)

    Google Scholar 

  3. G. Gbur, E. Wolf, J. Opt. Soc. Am. A 19, 1592 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Dogariu, S. Amarande, Opt. Lett. 28, 10 (2003)

    Article  ADS  Google Scholar 

  5. Y. Cai, S. He, Appl. Phys. Lett. 89, 041117 (2006)

    Article  ADS  Google Scholar 

  6. H.T. Eyyuboğlu, Y. Baykal, Opt. Commun. 278, 17 (2007)

    Article  ADS  Google Scholar 

  7. X. Chu, Y. Ni, G. Zhou, Appl. Phys. B 87, 547 (2007)

    Article  ADS  Google Scholar 

  8. E. Collett, E. Wolf, Opt. Lett. 2, 27 (1978)

    ADS  Google Scholar 

  9. E. Wolf, E. Collett, Opt. Commun. 25, 293 (1978)

    Article  ADS  Google Scholar 

  10. P. De Santis, F. Gori, G. Guattari, C. Palma, Opt. Commun. 29, 256 (1979)

    Article  ADS  Google Scholar 

  11. J.D. Farina, L.M. Narducci, E. Collett, Opt. Commun. 32, 203 (1980)

    Article  ADS  Google Scholar 

  12. T. Shirai, A. Dogariu, E. Wolf, Opt. Lett. 28, 610 (2003)

    Article  ADS  Google Scholar 

  13. X. Ji, X. Chen, B. Lü, J. Opt. Soc. Am. A 25, 21 (2008)

    Article  ADS  Google Scholar 

  14. R.A. Chodzko, J.M. Bernard, H. Mirels, Proc. SPIE 1224, 239 (1990)

    Article  ADS  Google Scholar 

  15. N. Niishi, T. Jitduno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, M. Nakatsuka, Opt. Rev. 7, 216 (2000)

    Article  Google Scholar 

  16. D.P. Crawford, E.J. Sigal, R.K. Tyson, R.J. Morgan, Proc. SPIE 1221, 132 (1990)

    Article  ADS  Google Scholar 

  17. G.L. Schuster, J.R. Andrews, Opt. Lett. 16, 913 (1991)

    ADS  Google Scholar 

  18. L.W. Casperson, Appl. Opt. 12, 2434 (1973)

    ADS  Google Scholar 

  19. B. Lü, H. Ma, J. Opt. Soc. Am. A 17, 2005 (2000)

    Article  ADS  Google Scholar 

  20. Y. Cai, Q. Lin, J. Opt. Soc. Am. A 20, 1111 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  21. X. Ji, E. Zhang, B. Lü, J. Mod. Opt. 53, 2111 (2006)

    Article  MATH  ADS  Google Scholar 

  22. Y. Cai, Q. Lin, Y. Baykal, H.T. Eyyuboğlu, Opt. Commun. 278, 157 (2007)

    Article  ADS  Google Scholar 

  23. H.T. Eyyuboğlu, Y. Baykal, Y. Cai, Appl. Phys. B 91, 265 (2008)

    Article  ADS  Google Scholar 

  24. B. Li, B. Lü, J. Opt. A: Pure and Appl. Opt. 5, 303 (2003)

    Article  ADS  Google Scholar 

  25. X. Ji, E. Zhang, B. Lü, J. Opt. Soc. Am. B 25, 825 (2008)

    Article  ADS  Google Scholar 

  26. Y. Baykal, H.T. Eyyuboğlu, Opt. Commun. 269, 30 (2007)

    Article  ADS  Google Scholar 

  27. S.C.H. Wang, M.A. Plonus, J. Opt. Soc. Am. 69, 1297 (1979)

    Article  ADS  Google Scholar 

  28. J.C. Leader, J. Opt. Soc. Am. 68, 175 (1978)

    Article  ADS  Google Scholar 

  29. A.E. Siegman, Proc. SPIE 1224, 2 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Ji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, X., Pu, Z. Angular spread of Gaussian Schell-model array beams propagating through atmospheric turbulence. Appl. Phys. B 93, 915–923 (2008). https://doi.org/10.1007/s00340-008-3256-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3256-3

PACS

Navigation