Skip to main content
Log in

A compact and robust diode laser system for atom interferometry on a sounding rocket

  • Rapid Communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a diode laser system optimized for laser cooling and atom interferometry with ultra-cold rubidium atoms aboard sounding rockets as an important milestone toward space-borne quantum sensors. Design, assembly and qualification of the system, combing micro-integrated distributed feedback (DFB) diode laser modules and free space optical bench technology, is presented in the context of the MAIUS (Matter-wave Interferometry in Microgravity) mission. This laser system, with a volume of 21 l and total mass of 27 kg, passed all qualification tests for operation on sounding rockets and is currently used in the integrated MAIUS flight system producing Bose–Einstein condensates and performing atom interferometry based on Bragg diffraction. The MAIUS payload is being prepared for launch in fall 2016. We further report on a reference laser system, comprising a rubidium stabilized DFB laser, which was operated successfully on the TEXUS 51 mission in April 2015. The system demonstrated a high level of technological maturity by remaining frequency stabilized throughout the mission including the rocket’s boost phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. M. Kasevich, S. Chu, Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67, 181–184 (1991)

    Article  ADS  Google Scholar 

  2. A. Peters, K.Y. Chung, S. Chu, High-precision gravity measurements using atom interferometry. Metrologia 38, 25–61 (2001)

    Article  ADS  Google Scholar 

  3. J. McGuirk, G. Foster, J. Fixler, M. Snadden, M. Kasevich, Sensitive absolute-gravity gradiometry using atom interferometry. Phys. Rev. A 65(3), 033608 (2002). doi:10.1103/PhysRevA.65.033608

    Article  ADS  Google Scholar 

  4. T.L. Gustavson, A. Landragin, M.A. Kasevich, Rotation sensing with a dual atom-interferometer Sagnac gyroscope. Class. Quantum Gravity 17, 2385–2398 (2000)

    Article  ADS  MATH  Google Scholar 

  5. C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H.-G. Scherneck, J. Müller, A. Peters, Mobile quantum gravity sensor with unprecedented stability. arXiv:1512.05660, p. 6 (2015)

  6. S. Merlet, Q. Bodart, N. Malossi, A. Landragin, F.P.D. Santos, O. Gitlein, L. Timmen, Comparison between two mobile absolute gravimeters: optical versus atomic interferometers. Metrologia 47, L9–L11 (2010)

    Article  ADS  Google Scholar 

  7. P. Gillot, O. Francis, A. Landragin, F. Pereira Dos Santos, S. Merlet, Stability comparison of two absolute gravimeters: optical versus atomic interferometers. Metrologia 51, L15 (2014)

    Article  ADS  Google Scholar 

  8. B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C.L.G. Alzar, R. Geiger, S. Merlet, F.P.D. Santos, A. Landragin, Metrology with atom interferometry: inertial sensors from laboratory to field applications. arXiv:1601.06082, p. 7 (2016)

  9. A. Peters, K.Y. Chung, S. Chu, Measurement of gravitational acceleration by dropping atoms. Nature 400, 849–852 (1999)

    Article  ADS  Google Scholar 

  10. H. Müller, A. Peters, S. Chu, A precision measurement of the gravitational redshift by the interference of matter waves. Nature 463, 926–929 (2010)

    Article  ADS  Google Scholar 

  11. D. Schlippert, J. Hartwig, H. Albers, L. Richardson, C. Schubert, A. Roura, W. Schleich, W. Ertmer, E. Rasel, Quantum test of the universality of free fall. Phys. Rev. Lett. 112, 203002 (2014)

    Article  ADS  Google Scholar 

  12. L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, M. Zhan, Test of equivalence principle at 10(-8) level by a dual-species double-diffraction raman atom interferometer. Phys. Rev. Lett. 115, 013004 (2015)

    Article  ADS  Google Scholar 

  13. H. Müntinga, H. Ahlers, M. Krutzik, A. Wenzlawski, S. Arnold, D. Becker, K. Bongs, H. Dittus, H. Duncker, N. Gaaloul, C. Gherasim, E. Giese, C. Grzeschik, T.W. Hänsch, O. Hellmig, W. Herr, S. Herrmann, E. Kajari, S. Kleinert, C. Lämmerzahl, W. Lewoczko-Adamczyk, J. Malcolm, N. Meyer, R. Nolte, A. Peters, M. Popp, J. Reichel, A. Roura, J. Rudolph, M. Schiemangk, M. Schneider, S.T. Seidel, K. Sengstock, V. Tamma, T. Valenzuela, A. Vogel, R. Walser, T. Wendrich, P. Windpassinger, W. Zeller, T. van Zoest, W. Ertmer, W.P. Schleich, E.M. Rasel, Interferometry with Bose–Einstein condensates in microgravity. Phys. Rev. Lett. 110, 093602 (2013)

    Article  ADS  Google Scholar 

  14. S.M. Dickerson, J.M. Hogan, A. Sugarbaker, D.M.S. Johnson, M.A. Kasevich, Multiaxis inertial sensing with long-time point source atom interferometry. Phys. Rev. Lett. 111, 083001 (2013)

    Article  ADS  Google Scholar 

  15. J. Hartwig, S. Abend, C. Schubert, D. Schlippert, H. Ahlers, K. Posso-Trujillo, N. Gaaloul, W. Ertmer, E.M. Rasel, Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer. New J. Phys. 17, 035011 (2015)

    Article  ADS  Google Scholar 

  16. D .N. Aguilera, H. Ahlers, B. Battelier, A. Bawamia, A. Bertoldi, R. Bondarescu, K. Bongs, P. Bouyer, C. Braxmaier, L. Cacciapuoti, C. Chaloner, M. Chwalla, W. Ertmer, M. Franz, N. Gaaloul, M. Gehler, D. Gerardi, L. Gesa, N. Gürlebeck, J. Hartwig, M. Hauth, O. Hellmig, W. Herr, S. Herrmann, A. Heske, A. Hinton, P. Ireland, P. Jetzer, U. Johann, M. Krutzik, A. Kubelka, C. Lämmerzahl, A. Landragin, I. Lloro, D. Massonnet, I. Mateos, A. Milke, M. Nofrarias, M. Oswald, A. Peters, K. Posso-Trujillo, E. Rasel, E. Rocco, A. Roura, J. Rudolph, W. Schleich, C. Schubert, T. Schuldt, S. Seidel, K. Sengstock, C .F. Sopuerta, F. Sorrentino, D. Summers, G .M. Tino, C. Trenkel, N. Uzunoglu, W. von Klitzing, R. Walser, T. Wendrich, A. Wenzlawski, P. Weßels, A. Wicht, E. Wille, M. Williams, P. Windpassinger, N. Zahzam, STE-QUEST test of the universality of free fall using cold atom interferometry. Class. Quantum Gravity 31, 115010 (2014)

    Article  ADS  MATH  Google Scholar 

  17. P.W. Graham, J.M. Hogan, M.A. Kasevich, S. Rajendran, New method for gravitational wave detection with atomic sensors. Phys. Rev. Lett. 110, 171102 (2013)

    Article  ADS  Google Scholar 

  18. N. Yu, J. Kohel, J. Kellogg, L. Maleki, Development of an atom-interferometer gravity gradiometer for gravity measurement from space. Appl. Phys. B 84, 647–652 (2006)

    Article  ADS  Google Scholar 

  19. O. Carraz, C. Siemes, L. Massotti, R. Haagmans, P. Silvestrin, A spaceborne gravity gradiometer concept based on cold atom interferometers for measuring Earths gravity field. Microgravity Sci. Technol. 26, 139–145 (2014)

    Article  Google Scholar 

  20. J.M. Hogan, D.M.S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S.-W. Chiow, P.W. Graham, M.A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B.D. Seery, L. Feinberg, R. Keski-Kuha, An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO). Gen. Relativ. Gravit. 43, 1953–2009 (2011)

    Article  ADS  Google Scholar 

  21. R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, P. Bouyer, Detecting inertial effects with airborne matter-wave interferometry. Nat. Commun. 2, 474 (2011)

    Article  ADS  Google Scholar 

  22. F. Theron, O. Carraz, G. Renon, N. Zahzam, Y. Bidel, M. Cadoret, A. Bresson, Narrow linewidth single laser source system for onboard atom interferometry. Appl. Phys. B 118, 1–5 (2014)

    Article  ADS  Google Scholar 

  23. T. Lévèque, L. Antoni-Micollier, B. Faure, J. Berthon, A laser setup for rubidium cooling dedicated to space applications. Appl. Phys. B 116, 997–1004 (2014)

    Article  ADS  Google Scholar 

  24. T. Lévèque, B. Faure, F.X. Esnault, C. Delaroche, D. Massonnet, O. Grosjean, F. Buffe, P. Torresi, T. Bomer, A. Pichon, P. Béraud, J.P. Lelay, S. Thomin, P. Laurent, PHARAO laser source flight model: design and performances. Rev. Sci. Instrum. 86, 033104 (2015)

    Article  ADS  Google Scholar 

  25. J. Grosse, S. Seidel, M. Krutzik, M. Scharringhausen, T. van Zoest, Thermal and mechanical design of the MAIUS atom interferometer sounding rocket payload, in AIAA SPACE 2014 Conference and Exposition, SPACE Conferences and Exposition, ESA Communications, okt (2014)

  26. A. Garcia, S .S .C. Yamanaka, A .N. Barbosa, F .C .P. Bizarria, W. Jung, F. Scheuerpflug, VSB-30 sounding rocket: history of flight performance. J. Aerosp. Technol. Manag. 3, 325–330 (2011)

    Article  Google Scholar 

  27. J. Rudolph, W. Herr, C. Grzeschik, T. Sternke, A. Grote, M. Popp, D. Becker, H. Müntinga, H. Ahlers, A. Peters, C. Lämmerzahl, K. Sengstock, N. Gaaloul, W. Ertmer, E .M. Rasel, A high-flux BEC source for mobile atom interferometers. New J. Phys. 17, 065001 (2015)

    Article  ADS  Google Scholar 

  28. H. Müntinga, H. Ahlers, M. Krutzik, A. Wenzlawski, S. Arnold, D. Becker, K. Bongs, H. Dittus, H. Duncker, N. Gaaloul, C. Gherasim, E. Giese, C. Grzeschik, T.W. Hänsch, O. Hellmig, W. Herr, S. Herrmann, E. Kajari, S. Kleinert, C. Lämmerzahl, W. Lewoczko-Adamczyk, J. Malcolm, N. Meyer, R. Nolte, A. Peters, M. Popp, J. Reichel, A. Roura, J. Rudolph, M. Schiemangk, M. Schneider, S.T. Seidel, K. Sengstock, V. Tamma, T. Valenzuela, A. Vogel, R. Walser, T. Wendrich, P. Windpassinger, W. Zeller, T. van Zoest, W. Ertmer, W.P. Schleich, E.M. Rasel, Interferometry with Bose–Einstein condensates in microgravity. Phys. Rev. Lett. 110, 093602 (2013)

    Article  ADS  Google Scholar 

  29. A. Stamminger, J. Ettl, J. Grosse, M. Hörschgen-Eggers, F. Jung, A. Kallenbach, G. Raith, W. Saedtler, S. Seidel, J. Turner, M. Wittkamp, MAIUS-1-vehicle, subsystems design and mission operations, in Proceedings 22nd ESA Symposium on European Rocket and Balloon Programmes and Related Research, vol. SP-730 (ESA Communications, 2015), pp. 183–190

  30. E. Luvsandamdin, C. Kürbis, M. Schiemangk, A. Sahm, A. Wicht, A. Peters, G. Erbert, G. Tränkle, Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space. Opt. Express 22, 7790–7798 (2014)

    Article  ADS  Google Scholar 

  31. H. Duncker, O. Hellmig, A. Wenzlawski, A. Grote, A.J. Rafipoor, M. Rafipoor, K. Sengstock, P. Windpassinger, Ultrastable, Zerodur-based optical benches for quantum gas experiments. Appl. Opt. 53, 4468–4474 (2014)

    Article  ADS  Google Scholar 

  32. M. Schiemangk, K. Lampmann, A. Dinkelaker, A. Kohfeldt, M. Krutzik, C. Kürbis, A. Sahm, S. Spießberger, A. Wicht, G. Erbert, G. Tränkle, A. Peters, High-power, micro-integrated diode laser modules at 767 and 780 nm for portable quantum gas experiments. Appl. Opt. 54, 5332–5338 (2015)

    Article  ADS  Google Scholar 

  33. P.A. Altin, M.T. Johnsson, V. Negnevitsky, G.R. Dennis, R.P. Anderson, J.E. Debs, S.S. Szigeti, K.S. Hardman, S. Bennetts, G.D. McDonald, L.D. Turner, J.D. Close, N.P. Robins, Precision atomic gravimeter based on Bragg diffraction. New J. Phys. 15, 023009 (2013)

    Article  ADS  Google Scholar 

  34. W. Hänsel, P. Hommelhoff, T.W. Hänsch, J. Reichel, Bose–Einstein condensation on a microelectronic chip. Nature 413, 498–501 (2001)

    Article  ADS  Google Scholar 

  35. O. SE, Quicklook Texus 51. Data provided by OHB SE (2015)

  36. M. Lezius et al., Space-born Frequency Comb Metrology, in preparation (2016)

  37. I. 16290:2013, Space systems—definition of the technology readiness levels (TRLs) and their criteria of assessment. ISO norm (2013)

Download references

Acknowledgments

We want to thank the Germany Space Agency (DLR) for their support. Special thanks go to Dr. Rainer Kuhl (DLR) for his enthusiasm, motivation and guidance. We thank Menlo Systems for integrating the rubidium spectroscopy module into the FOKUS payload and operation throughout the joint sounding rocket mission. This work is supported by the German Space Agency DLR with funds provided by the Federal Ministry for Economic Affairs and Energy under grant numbers DLR 50WM 1133, 1237, 1238 and 1345.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Schkolnik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schkolnik, V., Hellmig, O., Wenzlawski, A. et al. A compact and robust diode laser system for atom interferometry on a sounding rocket. Appl. Phys. B 122, 217 (2016). https://doi.org/10.1007/s00340-016-6490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6490-0

Keywords

Navigation